Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Comparing Pre-Training Schemes for Luxembourgish BERT Models
LOTHRITZ, Cedric; EZZINI, Saad; PURSCHKE, Christoph et al.
2023In Proceedings of the 19th Conference on Natural Language Processing (KONVENS 2023)
Peer reviewed
 

Files


Full Text
Qualitative_Assessment_paper_KONVENS-2.pdf
Author postprint (1.18 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
natural language processing; luxembourgish; NLP; BERT; pre-training; language model; computational linguistics; datasets; low-resource language; luxembert
Abstract :
[en] Despite the widespread use of pre-trained models in NLP, well-performing pre-trained models for low-resource languages are scarce. To address this issue, we propose two novel BERT models for the Luxembourgish language that improve on the state of the art. We also present an empirical study on both the performance and robustness of the investigated BERT models. We compare the models on a set of downstream NLP tasks and evaluate their robustness against different types of data perturbations. Additionally, we provide novel datasets to evaluate the performance of Luxembourgish language models. Our findings reveal that pre-training a pre-loaded model has a positive effect on both the performance and robustness of fine-tuned models and that using the German GottBERT model yields a higher performance while the multilingual mBERT results in a more robust model. This study provides valuable insights for researchers and practitioners working with low-resource languages and highlights the importance of considering pre-training strategies when building language models.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > TruX - Trustworthy Software Engineering
Disciplines :
Computer science
Author, co-author :
LOTHRITZ, Cedric  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
EZZINI, Saad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
PURSCHKE, Christoph  ;  University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Humanities (DHUM)
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Olariu, Isabella;  Zortify SA
Boytsov, Andrey;  BGL BNP Paribas
Lefebvre, Clement;  BGL BNP Paribas
Goujon, Anne;  BGL BNP Paribas
External co-authors :
no
Language :
English
Title :
Comparing Pre-Training Schemes for Luxembourgish BERT Models
Publication date :
September 2023
Event name :
19th Conference on Natural Language Processing (KONVENS 2023)
Event place :
Ingolstadt, Germany
Event date :
from 18-09-2023 to 22-09-2023
Main work title :
Proceedings of the 19th Conference on Natural Language Processing (KONVENS 2023)
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Available on ORBilu :
since 13 August 2023

Statistics


Number of views
260 (8 by Unilu)
Number of downloads
141 (14 by Unilu)

Bibliography


Similar publications



Contact ORBilu