[en] Complex diseases like neurodegenerative or cancer disorders are characterized by deregulations in multiple genes and proteins. Previous research has shown that neighboring genes in a molecular network tend to undergo coordinated expression changes. We describe an approach that allows identifying such jointly differentially expressed genes from input expression data and a graph encoding pairwise functional associations between genes (such as protein interactions). We cast this as a feature selection problem in penalized two-class (cases vs. controls) classification, and we propose a novel pairwise elastic net (PEN) penalty that favors the selection of discriminative genes according to their connectedness in the interaction graph. Experiments on large-scale gene expression data for Parkinson’s disease demonstrate marked improvements in feature grouping over competitive methods.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Sciences de la santé humaine: Multidisciplinaire, généralités & autres Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Vlassis, Nikos
GLAAB, Enrico ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Network perturbation analysis of omics data for complex diseases using convex optimization
Date de publication/diffusion :
2023
Nom de la manifestation :
31st Annual Intelligent Systems For Molecular Biology and the 22nd Annual European Conference on Computational Biology (ISMB/ECCB 2023)
Organisateur de la manifestation :
International Society for Computational Biology (ISCB)
Lieu de la manifestation :
Lyon, France
Date de la manifestation :
24.07.23
Manifestation à portée :
International
Focus Area :
Systems Biomedicine
Projet FnR :
FNR14599012 - Validating Digital Biomarkers For Better Personalized Treatment Of Parkinson'S Disease, 2020 (01/05/2021-30/04/2024) - Enrico Glaab
Intitulé du projet de recherche :
FNR14599012 > Enrico Glaab > DIGIPD > Validating Digital Biomarkers For Better Personalized Treatment Of Parkinson’S Disease > 01/05/2021 > 30/04/2024 > 2020