No full text
Unpublished conference/Abstract (Scientific congresses, symposiums and conference proceedings)
Finite Mixture Models for an underlying Beta distribution with an application to COVID-19 data
SCHILTZ, Jang; NOEL, Cédric
202334th European Meeting of Statisticians
 

Files


Full Text
No document available.
Annexes
Varsovie 2023.pdf
(4 MB)
Slides of the presentation
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
SCHILTZ, Jang ;  University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Finance (DF)
NOEL, Cédric ;  Université de Lorraine
External co-authors :
yes
Language :
English
Title :
Finite Mixture Models for an underlying Beta distribution with an application to COVID-19 data
Publication date :
04 July 2023
Event name :
34th European Meeting of Statisticians
Event organizer :
Bernoulli Society for Mathematical Statistics and Probability
Event place :
Warsaw, Poland
Event date :
3.-7.7.2023
Audience :
International
Focus Area :
Computational Sciences
Available on ORBilu :
since 25 July 2023

Statistics


Number of views
47 (0 by Unilu)
Number of downloads
11 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu