Abad F. A. T. Mancuso R. Bak S. Dantsker O. Caccamo M. (2016). “Reset-based recovery for real-time cyber-physical systems with temporal safety constraints,” in 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (IEEE) 1–8. 10.1109/ETFA.2016.7733561
Abdi F. Chen C.-Y. Hasan M. Liu S. Mohan S. Caccamo M. (2018). “Guaranteed physical security with restart-based design for cyber-physical systems,” in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS) (IEEE) 10–21. 10.1109/ICCPS.2018.00010
Aghakhani H. Meng D. Wang Y.-X. Kruegel C. Vigna G. (2021). “Bullseye polytope: A scalable clean-label poisoning attack with improved transferability,” in 2021 IEEE European Symposium on Security and Privacy (EuroS and P) (IEEE) 159–178. 10.1109/EuroSP51992.2021.00021
Arad B. S. El-Amawy A. (1997). On fault tolerant training of feedforward neural networks. Neur. Netw. 10, 539–553. 10.1016/S0893-6080(96)00089-5
Baidu (2017). Apollo: Open source autonomous driving.
CBS. (2010). Toyota “unintended acceleration” has killed. 89.
Chu L.-C. Wah B. W. (1990). “Fault tolerant neural networks with hybrid redundancy,” in 1990 IJCNN International Joint Conference on Neural Networks (IEEE) 639–649. 10.1109/IJCNN.1990.137773
Darms M. Rybski P. Urmson C. (2008). “Classification and tracking of dynamic objects with multiple sensors for autonomous driving in urban environments,” in 2008 IEEE Intelligent Vehicles Symposium (IEEE) 1197–1202. 10.1109/IVS.2008.462125930917566
Ebadi H. Moghadam M. H. Borg M. Gay G. Fontes A. Socha K. (2021). “Efficient and effective generation of test cases for pedestrian detection-search-based software testing of baidu apollo in svl,” in 2021 IEEE International Conference on Artificial Intelligence Testing (AITest) (IEEE) 103–110. 10.1109/AITEST52744.2021.00030
Elsayed G. F. Goodfellow I. Sohl-Dickstein J. (2018). Adversarial reprogramming of neural networks. arXiv preprint arXiv:1806.11146.
Eykholt K. Evtimov I. Fernandes E. Li B. Rahmati A. Xiao C. et al. (2018). “Robust physical-world attacks on deep learning visual classification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1625–1634. 10.1109/CVPR.2018.00175
Geng K. Liu S. (2020). Robust path tracking control for autonomous vehicle based on a novel fault tolerant adaptive model predictive control algorithm. Appl. Sci. 10, 6249. 10.3390/app10186249
Gouveia I. P. Völp M. Esteves-Verissimo P. (2022). Behind the last line of defense: Surviving soc faults and intrusions. Comput. Secur. 123, 102920. 10.1016/j.cose.2022.102920
Iso I. (2019). “Pas 21448-road vehicles-safety of the intended functionality,” in International Organization for Standardization.
Khunasaraphan C. Tanprasert T. Lursinsap C. (1994). “Recovering faulty self-organizing neural networks: By weight shifting technique,” in Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94) (IEEE) 1513–1518.
Kong F. Xu M. Weimer J. Sokolsky O. Lee I. (2018). “Cyber-physical system checkpointing and recovery,” in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS) (IEEE) 22–31. 10.1109/ICCPS.2018.00011
Lima A. Rocha F. Völp M. Esteves-Veríssimo P. (2016). “Towards safe and secure autonomous and cooperative vehicle ecosystems,” in Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy 59–70. 10.1145/2994487.2994489
Panoff M. Dutta R. G. Hu Y. Yang K. Jin Y. (2021). On sensor security in the era of iot and cps. SN Comput. Sci. 2, 1–14. 10.1007/s42979-020-00423-530205437
Peng Z. Yang J. Chen T.-H. P. Ma L. (2020). “A first look at the integration of machine learning models in complex autonomous driving systems,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering 1240–1250. 10.1145/3368089.3417063
Rong G. Shin B. H. Tabatabaee H. Lu Q. Lemke S. Možeiko M. et al. (2020). SVL simulator: a high fidelity simulator for autonomous driving. arXiv e-prints, arXiv:2005.03778. 10.1109/ITSC45102.2020.9294422
Sato T. Shen J. Wang N. Jia Y. Lin X. Chen Q. A. (2021). “Dirty road can attack: Security of deep learning based automated lane centering under $Physical−World$ attack,” in 30th USENIX Security Symposium (USENIX Security 21) 3309–3326. 10.14722/autosec.2021.23026
Seymour J. Ho D.-T.-C. Luu Q.-H. (2021). “An empirical testing of autonomous vehicle simulator system for urban driving,” in 2021 IEEE International Conference on Artificial Intelligence Testing (AITest) (IEEE), 111–117. 10.1109/AITEST52744.2021.00031
Shin J. Baek Y. Lee J. Lee S. (2018). Cyber-physical attack detection and recovery based on rnn in automotive brake systems. Appl. Sci. 9, 82. 10.3390/app9010082
Sousa P. Bessani A. N. Correia M. Neves N. F. Verissimo P. (2009). Highly available intrusion-tolerant services with proactive-reactive recovery. IEEE Trans. Parallel Distrib. Syst. 21, 452–465. 10.1109/TPDS.2009.83
Torres-Huitzil C. Girau B. (2017). Fault and error tolerance in neural networks: A review. IEEE Access 5, 17322–17341. 10.1109/ACCESS.2017.2742698
Zhou C. Yan Q. Shi Y. Sun L. (2021). Doublestar: Long-range attack towards depth estimation based obstacle avoidance in autonomous systems. arXiv preprint arXiv:2110.03154.