Doctoral thesis (Dissertations and theses)
Enhancing Deep Learning Performance with Second-order Methods, Random Embeddings, and Relation Extraction
TEMPERONI, Alessandro
2023
 

Files


Full Text
Alessandro_Temperoni_Thesis.pdf
Publisher postprint (3.42 MB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Computer science
Author, co-author :
TEMPERONI, Alessandro ;  University of Luxembourg > Faculty of Science, Technology and Medecine (FSTM)
Language :
English
Title :
Enhancing Deep Learning Performance with Second-order Methods, Random Embeddings, and Relation Extraction
Defense date :
03 July 2023
Institution :
Unilu - University of Luxembourg, Luxembourg
Degree :
Docteur en Informatique
Available on ORBilu :
since 14 July 2023

Statistics


Number of views
158 (8 by Unilu)
Number of downloads
205 (8 by Unilu)

Bibliography


Similar publications



Contact ORBilu