Du, Kai; Rutgers University (New Jersey) - RU > Rutgers Center for Emergent Materials and Department of Physics and Astronomy
Fang, Xiaochen; Rutgers University (New Jersey) - RU > Rutgers Center for Emergent Materials and Department of Physics and Astronomy
Won, Choongjae; Pohang University of Science and Technology, Pohang, Korea > Department of Physics, Laboratory for Pohang Emergent Materials and Max Planck POSTECH Center for Complex Phase Materials
De, Chandan; Institute for Basic Science (IBS), Pohang, Korea > Center for Artificial Low Dimensional Electronic Systems ; Pohang Accelerator Laboratory, Korea > Laboratory of Pohang Emergent Materials
Huang, Fei-ting; Rutgers University (New Jersey) - RU > Rutgers Center for Emergent Materials and Department of Physics and Astronomy
Gómez-Ruiz, Fernando J.; Instituto de Física Fundamental IFF-CSIC, Madrid, Spain ; Donostia International Physics Center, San Sebastian, Spain
Del Campo Echevarria, Adolfo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Donostia International Physics Center, San Sebastian, Spain
Cheong, Sang-Wook; Rutgers University (New Jersey) - RU > Rutgers Center for Emergent Materials and Department of Physics and Astronomy
Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977). DOI: 10.1103/RevModPhys.49.435
Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A: Math. Gen. 9, 1387–1398 (1976). DOI: 10.1088/0305-4470/9/8/029
Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985). DOI: 10.1038/317505a0
Hendry, P. C., Lawson, N. S., Lee, R. A. M., McClintock, P. V. E. & Williams, C. D. H. Generation of defects in superfluid 4He as an analogue of the formation of cosmic strings. Nature 368, 315–317 (1994). DOI: 10.1038/368315a0
Maniv, A., Polturak, E. & Koren, G. Observation of magnetic flux generated spontaneously during a rapid quench of superconducting films. Phys. Rev. Lett. 91, 197001 (2003). DOI: 10.1103/PhysRevLett.91.197001
Chuang, I., Durrer, R., Turok, N. & Yurke, B. Cosmology in the laboratory: defect dynamics in liquid crystals. Science 251, 1336–1342 (1991). DOI: 10.1126/science.251.4999.1336
Pyka, K. et al. Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals. Nat. Commun. 4, 2291 (2013). DOI: 10.1038/ncomms3291
Ulm, S. et al. Observation of the Kibble–Zurek scaling law for defect formation in ion crystals. Nat. Commun. 4, 2290 (2013). DOI: 10.1038/ncomms3290
Su, S.-W., Gou, S.-C., Bradley, A., Fialko, O. & Brand, J. Kibble-Zurek scaling and its breakdown for spontaneous generation of Josephson vortices in Bose-Einstein condensates. Phys. Rev. Lett. 110, 215302 (2013). DOI: 10.1103/PhysRevLett.110.215302
Lin, S.-Z. et al. Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics. Nat. Phys. 10, 970–977 (2014). DOI: 10.1038/nphys3142
Kolodrubetz, M., Pekker, D., Clark, B. K. & Sengupta, K. Nonequilibrium dynamics of bosonic Mott insulators in an electric field. Phys. Rev. B 85, 100505 (2012). DOI: 10.1103/PhysRevB.85.100505
Chen, D., White, M., Borries, C. & DeMarco, B. Quantum quench of an atomic Mott insulator. Phys. Rev. Lett. 106, 235304 (2011). DOI: 10.1103/PhysRevLett.106.235304
Corman, L. et al. Quench-induced supercurrents in an annular Bose gas. Phys. Rev. Lett. 113, 135302 (2014). DOI: 10.1103/PhysRevLett.113.135302
Nikoghosyan, G., Nigmatullin, R. & Plenio, M. B. Universality in the dynamics of second-order phase transitions. Phys. Rev. Lett. 116, 080601 (2016). DOI: 10.1103/PhysRevLett.116.080601
Hubert, A. & Schäfer, R. in Magnetic Domains 99–335 (Springer, 1998).
Lerch, M., Boysen, H., Neder, R., Frey, F. & Laqua, W. Neutron scattering investigation of the high temperature phase transition in NiTiO3. J. Phys. Chem. Solids 53, 1153–1156 (1992). DOI: 10.1016/0022-3697(92)90032-9
Boysen, H. & Altorfer, F. A neutron powder investigation of the high-temperature phase transition in NiTiO3. Z. Kristallogr. Cryst. Mater. 210, 328–337 (1995). DOI: 10.1524/zkri.1995.210.5.328
Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2019). DOI: 10.1038/s41567-019-0695-1
Hayashida, T. et al. Visualization of ferroaxial domains in an order-disorder type ferroaxial crystal. Nat. Commun. 11, 4582 (2020). DOI: 10.1038/s41467-020-18408-6
Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry guide to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016). DOI: 10.1103/PhysRevLett.116.177602
Lawson, C. A., Nord, G. L., Dowty, E. & Hargraves, R. B. Antiphase domains and reverse thermoremanent magnetism in ilmenite-hematite minerals. Science 213, 1372–1374 (1981). DOI: 10.1126/science.213.4514.1372
Cheong, S.-W., Lim, S., Du, K. & Huang, F.-T. Permutable SOS (symmetry operational similarity). npj Quantum Mater. 6, 58 (2021). DOI: 10.1038/s41535-021-00346-1
Danz, R. & Gretscher, P. C-DIC: a new microscopy method for rational study of phase structures in incident light arrangement. Thin Solid Films 462–463, 257–262 (2004). DOI: 10.1016/j.tsf.2004.05.124
Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 51, 481–587 (2002). DOI: 10.1080/00018730110117433
Hasenbusch, M. Restoring isotropy in a three-dimensional lattice model: the Ising universality class. Phys. Rev. B 104, 014426 (2021). DOI: 10.1103/PhysRevB.104.014426
Hasenbusch, M., Pinn, K. & Vinti, S. Critical exponents of the three-dimensional Ising universality class from finite-size scaling with standard and improved actions. Phys. Rev. B 59, 11471–11483 (1999). DOI: 10.1103/PhysRevB.59.11471
Ferrenberg, A. M., Xu, J. & Landau, D. P. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model. Phys. Rev. E 97, 043301 (2018). DOI: 10.1103/PhysRevE.97.043301
Campostrini, M., Pelissetto, A., Rossi, P. & Vicari, E. 25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice. Phys. Rev. E 65, 066127 (2002). DOI: 10.1103/PhysRevE.65.066127
Adzhemyan, L. T. et al. The dynamic critical exponent z for 2d and 3d Ising models from five-loop ε expansion. Phys. Lett. A 425, 127870 (2022). DOI: 10.1016/j.physleta.2021.127870
Schweitzer, D., Schlichting, S. & von Smekal, L. Spectral functions and dynamic critical behavior of relativistic Z 2 theories. Nucl. Phys. B 960, 115165 (2020). DOI: 10.1016/j.nuclphysb.2020.115165
Grassberger, P. Damage spreading and critical exponents for ‘model A’ Ising dynamics. Phys. A Stat. Mech. Appl. 214, 547–559 (1995). DOI: 10.1016/0378-4371(94)00285-2
Wang, F., Hatano, N. & Suzuki, M. Study on dynamical critical exponents of the Ising model using the damage spreading method. J. Phys. A: Math. Gen. 28, 4543–4552 (1995). DOI: 10.1088/0305-4470/28/16/012
Münkel, C., Heermann, D. W., Adler, J., Gofman, M. & Stauffer, D. The dynamical critical exponent of the two-, three- and five-dimensional kinetic Ising model. Phys. A Stat. Mech. Appl. 193, 540–552 (1993). DOI: 10.1016/0378-4371(93)90490-U
Hasenbusch, M. Dynamic critical exponent z of the three-dimensional Ising universality class: Monte Carlo simulations of the improved Blume-Capel model. Phys. Rev. E 101, 022126 (2020). DOI: 10.1103/PhysRevE.101.022126
Matz, R., Hunter, D. L. & Jan, N. The dynamic critical exponent of the three-dimensional Ising model. J. Stat. Phys. 74, 903–908 (1994). DOI: 10.1007/BF02188583
Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011). DOI: 10.1038/nmat3051
Lee, A. C. et al. Chiral electronic excitations in a quasi-2D Rashba system BiTeI. Phys. Rev. B 105, L161105 (2022). DOI: 10.1103/PhysRevB.105.L161105
Tomokiyo, A., Okada, T. & Kawano, S. Phase diagram of system (Bi2Te3)-(BiI3) and crystal structure of BiTeI. Jpn. J. Appl. Phys. 16, 291–298 (1977). DOI: 10.1143/JJAP.16.291
Butler, C. J. et al. Mapping polarization induced surface band bending on the Rashba semiconductor BiTeI. Nat. Commun. 5, 4066 (2014). DOI: 10.1038/ncomms5066
Kim, J., Rabe, K. M. & Vanderbilt, D. Negative piezoelectric response of van der Waals layered bismuth tellurohalides. Phys. Rev. B 100, 104115 (2019). DOI: 10.1103/PhysRevB.100.104115
Sakano, M. et al. Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors. Phys. Rev. Lett. 110, 107204 (2013). DOI: 10.1103/PhysRevLett.110.107204
Shi, Y. et al. A ferroelectric-like structural transition in a metal. Nat. Mater. 12, 1024–1027 (2013). DOI: 10.1038/nmat3754
Huang, F.-T. et al. Polar and phase domain walls with conducting interfacial states in a Weyl semimetal MoTe2. Nat. Commun. 10, 4211 (2019). DOI: 10.1038/s41467-019-11949-5
Zhou, W. X. & Ariando, A. Review on ferroelectric/polar metals. Jpn. J. Appl. Phys. 59, SI0802 (2020). DOI: 10.35848/1347-4065/ab8bbf
Dutta, A. & Dutta, A. Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain. Phys. Rev. B 96, 125113 (2017). DOI: 10.1103/PhysRevB.96.125113
Jaschke, D., Maeda, K., Whalen, J. D., Wall, M. L. & Carr, L. D. Critical phenomena and Kibble–Zurek scaling in the long-range quantum Ising chain. New J. Phys. 19, 033032 (2017). DOI: 10.1088/1367-2630/aa65bc
Puebla, R., Marty, O. & Plenio, M. B. Quantum Kibble–Zurek physics in long-range transverse-field Ising models. Phys. Rev. A 100, 032115 (2019).