[en] The erythrocyte (or red blood cell) sedimentation rate (ESR) is commonly interpreted as a measure of cell aggregation and as a biomarker of inflammation. It is well known that an increase of fibrinogen concentration, an aggregation-inducing protein for erythrocytes, leads to an increase of the sedimentation rate of erythrocytes, which is generally explained through the formation and faster settling of large disjoint aggregates. However, many aspects of erythrocyte sedimentation conform well with the collapse of a particle gel rather than with the sedimentation of disjoint aggregates. Using experiments and cell-level numerical simulations, we systematically investigate the dependence of ESR on fibrinogen concentration and its relation to the microstructure of the gel-like erythrocyte suspension. We show that for physiological aggregation interactions, an increase in the attraction strength between cells results in a cell network with larger void spaces. This geometrical change in the network structure occurs due to anisotropic shape and deformability of erythrocytes and leads to an increased gel permeability and faster sedimentation. Our results provide a comprehensive relation between the ESR and the cell-level structure of erythrocyte suspensions and support the gel hypothesis in the interpretation of blood sedimentation.
Disciplines :
Physics
Author, co-author :
Dasanna, Anil Kumar; Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
Gerhard, Gompper; Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
Kaestner, Lars; Experimental Physics, Saarland University, 66123 Saarbruecken, Germany ; Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany
WAGNER, Christian ; University of Luxembourg > Department of Physics and Materials Science
Fedosov, Dmitry A.; Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
External co-authors :
yes
Title :
Erythrocyte sedimentation: Effect of aggregation energy on gel structure during collapse
Publication date :
2022
Journal title :
Physical Review. E
ISSN :
2470-0045
eISSN :
2470-0053
Publisher :
AMER PHYSICAL SOC, ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA, Unknown/unspecified
I. Lapić, A. Padoan, D. Bozzato, and M. Plebani, Erythrocyte sedimentation rate and C-reactive protein in acute inflammation: Meta-analysis of diagnostic accuracy studies, Am. J. Clin. Pathol. 153, 14 (2020) AJCPAI 0002-9173 10.1093/ajcp/aqz142.
I. Lapić, D. Rogić, and M. Plebani, Erythrocyte sedimentation rate is associated with severe coronavirus disease 2019 (COVID-19): A pooled analysis, Clin. Chem. Lab. Med. (CCLM) 58, 1146 (2020) 10.1515/cclm-2020-0620.
B. H. McCabe, A brief history of the erythrocyte sedimentation rate, Lab. Med. 16, 177 (1985) LBMEBX 0007-5027 10.1093/labmed/16.3.177.
M. A. Taye, Sedimentation rate of erythrocyte from physics prospective, Eur. Phys. J. E 43, 1 (2020) EPJSFH 1292-8941 10.1140/epje/i2020-11943-2.
O. Baskurt, B. Neu, and H. J. Meiselman, Red Blood Cell Aggregation (CRC Press, Boca Raton, FL, 2011).
R. Smallwood, W. Tindale, and E. Trowbridge, The physics of red cell sedimentation, Phys. Med. Biol. 30, 125 (1985) PHMBA7 0031-9155 10.1088/0031-9155/30/2/002.
C. Puccini, D. Stasiw, and L. Cerny, The erythrocyte sedimentation curve: A semi-empirical approach, Biorheology 14, 43 (1977) BRHLAU 0006-355X 10.3233/BIR-1977-14105.
K. L. Dorrington and B. S. Johnston, The erythrocyte sedimentation rate time curve: Critique of an established solution, J. Biomech. 16, 99 (1983) JBMCB5 0021-9290 10.1016/0021-9290(83)90051-9.
J. V. d. C. Sousa, M. N. dos Santos, L. Magna, and E. C. de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math. 37, 6903 (2018) 0101-8205 10.1007/s40314-018-0717-0.
J. Rouwhorst, P. Schall, C. Ness, T. Blijdenstein, and A. Zaccone, Nonequilibrium master kinetic equation modeling of colloidal gelation, Phys. Rev. E 102, 022602 (2020) 2470-0045 10.1103/PhysRevE.102.022602.
H. Guo, S. Ramakrishnan, J. L. Harden, and R. L. Leheny, Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations, J. Chem. Phys. 135, 154903 (2011) JCPSA6 0021-9606 10.1063/1.3653380.
L. J. Teece, J. M. Hart, K. Y. N. Hsu, S. Gilligan, M. A. Faers, and P. Bartlett, Gels under stress: The origins of delayed collapse, Colloids Surf. A 458, 126 (2014) CPEAEH 0927-7757 10.1016/j.colsurfa.2014.03.018.
R. Buscall, T. H. Choudhury, M. A. Faers, J. W. Goodwin, P. A. Luckham, and S. J. Partridge, Towards rationalising collapse times for the delayed sedimentation of weakly-aggregated colloidal gels, Soft Matter 5, 1345 (2009) 1744-683X 10.1039/b805807e.
V. Gopalakrishnan, K. S. Schweizer, and C. Zukoski, Linking single particle rearrangements to delayed collapse times in transient depletion gels, J. Phys.: Condens. Matter 18, 11531 (2006) JCOMEL 0953-8984 10.1088/0953-8984/18/50/009.
P. Padmanabhan and R. Zia, Gravitational collapse of colloidal gels: Non-equilibrium phase separation driven by osmotic pressure, Soft Matter 14, 3265 (2018) 1744-683X 10.1039/C8SM00002F.
P. Bartlett, L. J. Teece, and M. A. Faers, Sudden collapse of a colloidal gel, Phys. Rev. E 85, 021404 (2012) PLEEE8 1539-3755 10.1103/PhysRevE.85.021404.
S. Manley, J. M. Skotheim, L. Mahadevan, and D. A. Weitz, Gravitational Collapse of Colloidal Gels, Phys. Rev. Lett. 94, 218302 (2005) PRLTAO 0031-9007 10.1103/PhysRevLett.94.218302.
C. Derec, D. Senis, L. Talini, and C. Allain, Rapid settling of a colloidal gel, Phys. Rev. E 67, 062401 (2003) 1063-651X 10.1103/PhysRevE.67.062401.
C. Allain, M. Cloitre, and M. Wafra, Aggregation and Sedimentation in Colloidal Suspensions, Phys. Rev. Lett. 74, 1478 (1995) PRLTAO 0031-9007 10.1103/PhysRevLett.74.1478.
A. Darras, A. K. Dasanna, T. John, G. Gompper, L. Kaestner, D. A. Fedosov, and C. Wagner, Erythrocyte Sedimentation: Collapse of a High-Volume-Fraction Soft-Particle Gel, Phys. Rev. Lett. 128, 088101 (2022) 10.1103/PhysRevLett.128.088101.
A. Pribush, D. Meyerstein, and N. Meyerstein, The mechanism of erythrocyte sedimentation. Part 1: Channeling in sedimenting blood, Colloids Surf., B 75, 214 (2010) CSBBEQ 0927-7765 10.1016/j.colsurfb.2009.08.036.
G. M. Channell, K. T. Miller, and C. F. Zukoski, Effects of microstructure on the compressive yield stress, AIChE J. 46, 72 (2000) AICEAC 0001-1541 10.1002/aic.690460110.
M. L. Kilfoil, E. E. Pashkovski, J. A. Masters, and D. Weitz, Dynamics of weakly aggregated colloidal particles, Philos. Trans. R. Soc. London A 361, 753 (2003) PTRMAD 1364-503X 10.1098/rsta.2002.1163.
S. W. Kamp and M. L. Kilfoil, Universal behaviour in the mechanical properties of weakly aggregated colloidal particles, Soft Matter 5, 2438 (2009) 1744-683X 10.1039/b814975e.
A. D. Dinsmore, V. Prasad, I. Y. Wong, and D. A. Weitz, Microscopic Structure and Elasticity of Weakly Aggregated Colloidal Gels, Phys. Rev. Lett. 96, 185502 (2006) PRLTAO 0031-9007 10.1103/PhysRevLett.96.185502.
S. B. Lindström, T. E. Kodger, J. Sprakel, and D. A. Weitz, Structures, stresses, and fluctuations in the delayed failure of colloidal gels, Soft Matter 8, 3657 (2012) 1744-683X 10.1039/c2sm06723d.
S. E. Bedell and B. T. Bush, Erythrocyte sedimentation rate. From folklore to facts, Am. J. Med. 78, 1001 (1985) AJMEAZ 0002-9343 10.1016/0002-9343(85)90224-4.
A. Kratz, M. Plebani, M. Peng, Y. Lee, R. McCafferty, S. Machin, and I. C. for Standardization in Haematology (ICSH), ICSH recommendations for modified and alternate methods measuring the erythrocyte sedimentation rate, Int. J. Lab. Hematol. 39, 448 (2017) 1751-5521 10.1111/ijlh.12693.
K. Terzaghi, Erdbaumechanik auf bodenphysikalischer Grundlage (Leipzig u. Wien, F. Deuticke., 1925).
P. C. Carman, Permeability of saturated sands, soils and clays, J. Agric. Sci. 29, 262 (1939) JASIAB 0021-8596 10.1017/S0021859600051789.
T. Ozgumus, M. Mobedi, and U. Ozkol, Determination of Kozeny constant based on porosity and pore to throat size ratio in porous medium with rectangular rods, Eng. Appl. Comput. Fluid Mech. 8, 308 (2014) 1994-2060 10.1080/19942060.2014.11015516.
A. W. J. Heijs and C. P. Lowe, Numerical evaluation of the permeability and the Kozeny constant for two types of porous media, Phys. Rev. E 51, 4346 (1995) 1063-651X 10.1103/PhysRevE.51.4346.
P. Xu and B. Yu, Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry, Adv. Water Resour. 31, 74 (2008) AWREDI 0309-1708 10.1016/j.advwatres.2007.06.003.
N. Norouzi, H. C. Bhakta, and W. H. Grover, Sorting cells by their density, PLoS ONE 12, e0180520 (2017) 1932-6203 10.1371/journal.pone.0180520.
R. J. Trudnowski and R. C. Rico, Specific gravity of blood and plasma at 4 and (Equation presented), Clin. Chem. 20, 615 (1974) CLCHAU 0009-9147 10.1093/clinchem/20.5.615.
M. Brust, O. Aouane, M. Thiébaud, D. Flormann, C. Verdier, L. Kaestner, M. Laschke, H. Selmi, A. Benyoussef, T. Podgorski, The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows, Sci. Rep. 4, 1 (2014).
D. Flormann, E. Kuder, P. Lipp, C. Wagner, and L. Kaestner, Is there a role of C-reactive protein in red blood cell aggregation? Int. J. Lab. Hematol. 37, 474 (2015) 1751-5521 10.1111/ijlh.12313.
K. Lee, M. Kinnunen, M. D. Khokhlova, E. V. Lyubin, A. V. Priezzhev, I. Meglinski, and A. A. Fedyanin, Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions, J Biomed. Opt. 21, 035001 (2016) JBOPFO 1083-3668 10.1117/1.JBO.21.3.035001.
H. J. Issaq, Z. Xiao, and T. D. Veenstra, Serum and plasma proteomics, Chem. Rev. 107, 3601 (2007) CHREAY 0009-2665 10.1021/cr068287r.
Z. Yu, G. Kastenmüller, Y. He, P. Belcredi, G. Möller, C. Prehn, J. Mendes, S. Wahl, W. Roemisch-Margl, U. Ceglarek, Differences between human plasma and serum metabolite profiles, PLoS ONE 6, e21230 (2011) 1932-6203 10.1371/journal.pone.0021230.
D. Stauffer and A. Aharony, Introduction to Percolation Theory (CRC Press, Boca Raton, FL, 2018).
H. Noguchi and G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows, Proc. Natl. Acad. Sci. USA 102, 14159 (2005) PNASA6 0027-8424 10.1073/pnas.0504243102.
D. A. Fedosov, B. Caswell, and G. E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys. J. 98, 2215 (2010) BIOJAU 0006-3495 10.1016/j.bpj.2010.02.002.
D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Systematic coarse-graining of spectrin-level red blood cell models, Comput. Meth. Appl. Mech. Eng. 199, 1937 (2010) CMMECC 0045-7825 10.1016/j.cma.2010.02.001.
W. Linss, C. Pilgrim, and H. Feuerstein, How thick is the glycocalyx of human erythrocytes? Acta Histochem. 91, 101 (1991) 0065-1281 10.1016/S0065-1281(11)80301-6.
N. M. Geekiyanage, M. A. Balanant, E. Sauret, S. Saha, R. Flower, C. T. Lim, and Y. Gu, A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies, PLoS ONE 14, e0215447 (2019) 1932-6203 10.1371/journal.pone.0215447.
D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis, Predicting human blood viscosity in silico, Proc. Natl. Acad. Sci. USA 108, 11772 (2011) PNASA6 0027-8424 10.1073/pnas.1101210108.
P. Ermolinskiy, A. Lugovtsov, F. Yaya, K. Lee, L. Kaestner, C. Wagner, and A. Priezzhev, Effect of red blood cell aging in vivo on their aggregation properties in vitro: Measurements with laser tweezers, Appl. Sci. 10, 7581 (2020) 2076-3417 10.3390/app10217581.
P. Español and M. Revenga, Smoothed dissipative particle dynamics, Phys. Rev. E 67, 026705 (2003) 1063-651X 10.1103/PhysRevE.67.026705.
K. Müller, D. A. Fedosov, and G. Gompper, Smoothed dissipative particle dynamics with angular momentum conservation, J. Comput. Phys. 281, 301 (2015) JCTPAH 0021-9991 10.1016/j.jcp.2014.10.017.
Z. Varga, G. Wang, and J. Swan, The hydrodynamics of colloidal gelation, Soft Matter 11, 9009 (2015) 1744-683X 10.1039/C5SM01414J.
Z. Varga, J. L. Hofmann, and J. W. Swan, Modelling a hydrodynamic instability in freely settling colloidal gels, J. Fluid Mech. 856, 1014 (2018) JFLSA7 0022-1120 10.1017/jfm.2018.725.
A. Razali, C. J. Fullerton, F. Turci, J. E. Hallett, R. L. Jack, and C. P. Royall, Effects of vertical confinement on gelation and sedimentation of colloids, Soft Matter 13, 3230 (2017) 1744-683X 10.1039/C6SM02221A.
E. A. Evans and R. Skalak, Mechanics and Thermodynamics of Biomembranes (CRC Press, Boca Raton, FL, 1980).
E. A. Evans, Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophys. J. 43, 27 (1983) BIOJAU 0006-3495 10.1016/S0006-3495(83)84319-7.
M. Dao, C. T. Lim, and S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids 51, 2259 (2003) JMPSA8 0022-5096 10.1016/j.jmps.2003.09.019.
M. Peltomäki and G. Gompper, Sedimentation of single red blood cells, Soft Matter 9, 8346 (2013) 1744-683X 10.1039/c3sm50592h.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevE.105.024610 for Supplemental Materials. They contain a short discussion of the influence of cell rigidity on the delay time, a discussion of the influence of aggregation energy on the percolation, Supplemental Fig. 3 (illustration of pore sizes determination by numerical simulations), Supplemental Fig. 4 (hole size PDF from simulations), Supplemental Fig. 5 (hole size PDF), Supplemental Fig. 6 (structures obtained in various conditions), and Supplemental Movie S1/H40ImageJ.avi (illustrative movie generated from numerical simulations).
M. Mathew, T. Schilling, and M. Oettel, Connectivity percolation in suspensions of hard platelets, Phys. Rev. E 85, 061407 (2012) PLEEE8 1539-3755 10.1103/PhysRevE.85.061407.
I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Sauvanet, B. Aussilhou, S. Dokmak, A. Couvelard, D. Cazals-Hatem, Sensing of red blood cells with decreased membrane deformability by the human spleen, Blood Adv. 2, 2581 (2018) 2473-9529 10.1182/bloodadvances.2018024562.
A. M. Forsyth, J. Wan, W. D. Ristenpart, and H. A. Stone, The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows, Microvasc. Res. 80, 37 (2010) MIVRA6 0026-2862 10.1016/j.mvr.2010.03.008.
W. Russel, D. Saville, and W. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989).
A. Darras, K. Peikert, A. Rabe, F. Yaya, G. Simionato, T. John, A. K. Dasanna, S. Buvalyy, J. Geisel, A. Hermann, Acanthocyte sedimentation rate as a diagnostic biomarker for neuroacanthocytosis syndromes: Experimental evidence and physical justification, Cells 10, 788 (2021) 2073-4409 10.3390/cells10040788.
L. D. Gelb, A. L. Graham, A. M. Mertz, and P. H. Koenig, On the permeability of colloidal gels, Phys. Fluids 31, 021210 (2019) PHFLE6 1070-6631 10.1063/1.5054596.
S. K. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics (Oxford University Press, Oxford, 2000).
D. Senis, L. Gorre-Talini, and C. Allain, Systematic study of the settling kinetics in an aggregating colloidal suspension, Eur. Phys. J. E 4, 59 (2001) EPJSFH 1292-8941 10.1007/PL00013683.