[en] The erythrocyte sedimentation rate (ESR) is one of the oldest medical diagnostic tools. However, currently there is some debate on the structure formed by the cells during the sedimentation process. While the conventional view is that erythrocytes sediment as separate aggregates, others have suggested that they form a percolating gel, similar to other colloidal suspensions. However, visualization of aggregated erythrocytes, which would settle the question, has always been challenging. Direct methods usually study erythrocytes in 2D situations or low hematocrit (∼1%). Indirect methods, such as scattering or electric measurements, provide insight on the suspension evolution, but cannot directly discriminate between open or percolating structures. Here, we achieved a direct probing of the structures formed by erythrocytes in blood at stasis. We focused on blood samples at rest with controlled hematocrit of 45%, from healthy donors, and report observations from three different optical imaging techniques: direct light transmission through thin samples, two-photon microscopy and light-sheet microscopy. The three techniques, used in geometries with thickness from 150 μm to 3 mm, highlight that erythrocytes form a continuous network with characteristic cracks, i.e., a colloidal gel. The characteristic distance between the main cracks is of the order of ∼100 μm. A complete description of the structure then requires a field of view of the order of ∼1 mm, in order to obtain a statistically relevant number of structural elements. A quantitative analysis of the erythrocyte related processes and interactions during the sedimentation need a further refinement of the experimental set-ups.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Abay A. Simionato G. Chachanidze R. Bogdanova A. Hertz L. Bianchi P. et al. (2019). Glutaraldehyde – a subtle tool in the investigation of healthy and pathologic red blood cells. Front. Physiol. 10:514. 10.3389/fphys.2019.00514 31139090
Allain C. Cloitre M. Wafra M. (1995). Aggregation and sedimentation in colloidal suspensions. Phys. Rev. Lett. 74:1478. 10.1103/PhysRevLett.74.1478 10059030
Backes C. S. Friedmann K. S. Mang S. Knörck A. Hoth M. Kummerow C. (2018). Natural killer cells induce distinct modes of cancer cell death: discrimination, quantification, and modulation of apoptosis, necrosis, and mixed forms. J. Biol. Chem. 293 16348–16363. 10.1074/jbc.RA118.004549 30190323
Baskurt O. Neu B. Meiselman H. J. (2012). Red Blood Cell Aggregation. Boca Raton, FL: CRC Press.
Bernhardt I. Hianik T. (2000). Editorial. Bioelectrochemistry 52:115. 10.1016/s0302-4598(00)00113-6
Biernacki E. (1894). Blutkörperchen und plasma in ihren gegenseitigen Beziehungen. Wien. Med. Wochenschr. 44, 36–37.
Breunig H. G. Bückle R. Kellner-Höfer M. Weinigel M. Lademann J. Sterry W. et al. (2012). Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin. Microsc. Res. Tech. 75 492–498. 10.1002/jemt.21082 21972128
Brigden M. L. Page N. E. (1993). Three closed-tube methods for determining erythrocyte sedimentation rate. Lab. Med. 24 97–102.
Cartarozzi L. P. Rieder P. Bai X. Scheller A. de Oliveira A. L. R. Kirchhoff F. (2018). In vivo two-photon imaging of motoneurons and adjacent glia in the ventral spinal cord. J. Neurosci. Methods 299 8–15. 10.1016/j.jneumeth.2018.01.005 29408351
Darras A. Peikert K. Rabe A. Yaya F. Simionato G. John T. et al. (2021a). Acanthocyte sedimentation rate as a diagnostic biomarker for neuroacanthocytosis syndromes: experimental evidence and physical justification. Cells 10:788.
Darras A. Dasanna A. K. John T. Gompper G. Kaestner L. Fedosov D. A. et al. (2021b). Erythrocyte sedimentation: fracture and collapse of a high-volume-fraction soft-colloid gel. arXiv [Preprint]. arXiv:2108.13841.
Dasanna A. K. Darras A. John T. Gompper G. Kaestner L. Wagner C. et al. (2021). Erythrocyte sedimentation: effect of aggregation energy on gel structure during collapse. arXiv [Preprint]. arXiv:2108.13848.
Denk W. Piston D. W. Webb W. W. (1995). “Two-photon molecular excitation in laser-scanning microscopy,” in Handbook of Biological Confocal Microscopy, ed. Pawley J. B. (Boston, MA: Springer), 445–458.
Derec C. Senis D. Talini L. Allain C. (2003). Rapid settling of a colloidal gel. Phys. Rev. E 67:062401. 10.1103/PhysRevE.67.062401 16241278
Fahraeus R. (1929). The suspension stability of the blood. Phys. Rev. 9 241–274. 10.1152/physrev.1929.9.2.241
Flormann D. Aouane O. Kaestner L. Ruloff C. Misbah C. Podgorski T. et al. (2017). The buckling instability of aggregating red blood cells. Sci. Rep. 7:7928. 10.1038/s41598-017-07634-6 28801570
Flormann D. Kuder E. Lipp P. Wagner C. Kaestner L. (2015). Is there a role of C-reactive protein in red blood cell aggregation? Int. J. Lab. Hematol. 37 474–482. 10.1111/ijlh.12313 25382124
Flügel K. Tian Q. Kaestner L. (2018). “Optical sectioning microscopy at ‘temporal super-resolution,” in Microscopy of the Heart, eds Kaestner L. Lipp P. (Cham: Springer Nature), 21–35.
Gopalakrishnan V. Schweizer K. S. Zukoski C. F. (2006). Linking single particle rearrangements to delayed collapse times in transient depletion gels. J. Phys. Condens. Matter. 18:11531. 10.1088/0953-8984/18/50/009
Gyawali P. Ziegler D. Cailhier J. F. Denault A. Cloutier G. (2018). Quantitative measurement of erythrocyte aggregation as a systemic inflammatory marker by ultrasound imaging: a systematic review. Ultrasound Med. Biol. 44 1303–1317.
Hammer K. Lipp P. Kaestner L. (2014). Multi-beam two-photon imaging of fast Ca 2+ signals in the langendorff mouse heart. Cold Spring Harb. Protoc. 2014:rot077016. 10.1101/pdb.prot077016 25368305
Harich R. Blythe T. W. Hermes M. Zaccarelli E. Sederman A. J. Gladden L. F. et al. (2016). Gravitational collapse of depletion-induced colloidal gels. Soft Matter. 12 4300–4308. 10.1039/C5SM02651B 27001686
Huisken J. Swoger J. Bene F. D. Wittbrodt J. Stelzer E. H. K. (2004). Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305 1007–1009. 10.1126/science.1100035 15310904
Jan K. Usami S. Smith J. A. (1981). Influence of oxygen tension and hematocrit reading on ESRs of sickle cells. Role of RBC aggregation. Arch. Intern. Med. 141 1815–1818. 10.1001/archinte.141.13.1815 7316628
Kaestner L. Lipp P. (2007). Non-linear and ultra high-speed imaging for explorations of the murine and human heart. Prog. Biomed. Opt. Imaging 8 66330K–1–66330K–10.
Kaestner L. Tabellion W. Weiss E. Bernhardt I. Lipp P. (2006). Calcium imaging of individual erythrocytes: problems and approaches. Cell Calcium 39 13–19. 10.1016/j.ceca.2005.09.004 16242187
Kaliviotis E. Ivanov I. Antonova N. Yianneskis M. (2010). Erythrocyte aggregation at non-steady flow conditions: a comparison of characteristics measured with electrorheology and image analysis. Clin. Hemorheol. Microcirc. 44 43–54. 10.3233/CH-2009-1251 20134092
Kaliviotis E. Yianneskis M. (2007). On the effect of dynamic flow conditions on blood microstructure investigated with optical shearing microscopy and rheometry. Proc. Inst. Mech. Eng. H 221 887–897. 10.1243/09544119JEIM243 18161248
Késmárky G. Kenyeres P. Rábai M. Tóth K. (2008). Plasma viscosity: a forgotten variable. Clin. Hemorheol. Microcirc. 39 243–246.
König K. (2018). “Multiphoton tomography,” in Multiphoton Microscopy and Fluorescence Lifetime Imaging, ed. König K. (Berlin: De Gruyter), 247–267.
König K. Andersen P. Le T. Breunig H. G. (2015). Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator. Microsc. Res. Tech. 78 1154–1158. 10.1002/jemt.22599 26534831
König K. Riemann I. (2003). High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J. Biomed. Opt. 8 432–439. 10.1117/1.1577349
Kushner I. (1988). The acute phase response: an overview. Methods Enzymol. 163 373–383. 10.1016/0076-6879(88)63037-0
Lawrence C. Fabry M. E. (1986). Erythrocyte sedimentation rate during steady state and painful crisis in sickle cell anemia. Am. J. Med. 81 801–808. 10.1016/0002-9343(86)90349-9
Lipp P. Kaestner L. (2006). “Image-based high-content Screening – a view from basic science,” in High Throughput-Screening in Drug Discovery, ed. Hüser J. (Weinheim: Wiley-VCH), 129–149.
Patton W. N. Meyer P. J. Stuart J. (1989). Evaluation of sealed vacuum extraction method (Seditainer) for measurement of erythrocyte sedimentation rate. J. Clin. Pathol. 42 313–317.
Pribush A. Meyerstein D. Meyerstein N. (2010). The mechanism of erythrocyte sedimentation. Part 1: channeling in sedimenting blood. Colloids Surf. B Biointerfaces 75 214–223. 10.1016/j.colsurfb.2009.08.036 19766465
Pribush A. Meyerstein N. (2007). Methodological aspects of erythrocyte aggregation. Recent Pat. Anticancer Drug Discov. 2 240–245. 10.2174/157489207782497226 18221067
Rabe A. Kihm A. Darras A. Peikert K. Simionato G. Dasanna A. K. et al. (2021). The erythrocyte sedimentation rate and its relation to cell shape and rigidity of red blood cells from chorea-acanthocytosis patients in an off-label treatment with dasatinib. Biomolecules 11:727. 10.3390/biom11050727 34066168
Reddy N. M. Kothandan D. Lingam S. C. Ahmad A. (2012). A study on refractive index of plasma of blood of patients suffering from tuberculosis. Int. J. Technol. Eng. 8 23–25.
Salt H. B. Wolff O. H. Lloyd J. K. Fosbrooke A. S. Cameron A. H. Hubble D. V. (1960). On having no beta-lipoprotein a syndrome comprising a-beta-lipoproteaemia, acanthocytosis, and steatorrhoea. Lancet 276 325–329. 10.1016/s0140-6736(60)91478-1
Schoppmeyer R. Zhao R. Hoth M. Qu B. (2018). Light-sheet microscopy for three-dimensional visualization of human immune cells. J. Vis. Exp. 2018:57651. 10.3791/57651 29985362
Senis D. Gorre-Talini L. Allain C. (2001). Systematic study of the settling kinetics in an aggregating colloidal suspension. Eur. Phys. J. E 4 59–68. 10.1007/PL00013683
Shiga T. Imaizumi K. Harada N. Sekiya M. (1983). Kinetics of rouleaux formation using TV image analyzer. I. Human erythrocytes. Am. J. Physiol. Heart Circ. Physiol. 245 H252–H258. 10.1152/ajpheart.1983.245.2.H252 6881359
Starrs L. Poon W. C. K. Hibberd D. J. Robins M. M. (2002). Collapse of transient gels in colloid-polymer mixtures. J. Phys. Condens. Matter. 14:2485. 10.1088/0953-8984/14/10/302
Tuchin V. V. Xu X. Wang R. K. (2002). Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood. Appl. Opt. 41:258. 10.1364/ao.41.000258 11900442
Weinigel M. Breunig H. G. Uchugonova A. König K. (2015). Multipurpose nonlinear optical imaging system for in vivo and ex vivo multimodal histology. J. Med. Imaging 2:016003. 10.1117/1.jmi.2.1.016003
Westergreen A. V. A. (1921). Studies of the suspension stability of the blood in pulmonary tuberculosis. Acta Med. Scand. 54 247–282.
Whitmer J. K. Luijten E. (2011). Sedimentation of aggregating colloids. J. Chem. Phys. 134:034510. 10.1063/1.3525923
Yeom E. Lee S. J. (2015). Microfluidic-based speckle analysis for sensitive measurement of erythrocyte aggregation: a comparison of four methods for detection of elevated erythrocyte aggregation in diabetic rat blood. Biomicrofluidics 9:024110. 10.1063/1.4917023