Article (Périodiques scientifiques)
ShuffleDetect: Detecting Adversarial Images against Convolutional Neural Networks
CHITIC, Ioana Raluca; TOPAL, Ali Osman; LEPREVOST, Franck
2023In Applied Sciences, 13 (6), p. 4068
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
applsci-13-04068-v2 (2).pdf
Postprint Éditeur (4.99 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Adversarial Attacks Detection; Evolutionary Algorithm; Convolutional Neural Networks; Security
Résumé :
[en] Recently, convolutional neural networks (CNNs) have become the main drivers in many image recognition applications. However, they are vulnerable to adversarial attacks, which can lead to disastrous consequences. This paper introduces ShuffleDetect as a new and efficient unsupervised method for the detection of adversarial images against trained convolutional neural networks. Its main feature is to split an input image into non-overlapping patches, then swap the patches according to permutations, and count the number of permutations for which the CNN classifies the unshuffled input image and the shuffled image into different categories. The image is declared adversarial if and only if the proportion of such permutations exceeds a certain threshold value. A series of 8 targeted or untargeted attacks was applied on 10 diverse and state-of-the-art ImageNet-trained CNNs, leading to 9500 relevant clean and adversarial images. We assessed the performance of ShuffleDetect intrinsically and compared it with another detector. Experiments show that ShuffleDetect is an easy-to-implement, very fast, and near memory-free detector that achieves high detection rates and low false positive rates.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CHITIC, Ioana Raluca ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
TOPAL, Ali Osman ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
LEPREVOST, Franck ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
ShuffleDetect: Detecting Adversarial Images against Convolutional Neural Networks
Date de publication/diffusion :
22 mars 2023
Titre du périodique :
Applied Sciences
eISSN :
2076-3417
Maison d'édition :
MDPI, Basel, Suisse
Titre particulier du numéro :
Computing and Artificial Intelligence
Volume/Tome :
13
Fascicule/Saison :
6
Pagination :
4068
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 29 mai 2023

Statistiques


Nombre de vues
143 (dont 5 Unilu)
Nombre de téléchargements
60 (dont 3 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
4
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu