Article (Périodiques scientifiques)
A strategy creating high-resolution adversarial images against convolutional neural networks and a feasibility study on 10 CNNs
LEPREVOST, Franck; TOPAL, Ali Osman; Avdusinovic, Elmir et al.
2022In Journal of Information and Telecommunication, 7 (1), p. 89-119
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
A strategy creating high resolution adversarial images against convolutional neural networks and a feasibility study on 10 CNNs.pdf
Postprint Éditeur (6.7 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Black-box attack; Convolutional Neural Network; Evolutionary Algorithm; high-resolution adversarial image
Résumé :
[en] To perform image recognition, Convolutional Neural Networks (CNNs) assess any image by first resizing it to its input size. In particular, high-resolution images are scaled down, say to 224×244 for CNNs trained on ImageNet. So far, existing attacks, aiming at creating an adversarial image that a CNN would misclassify while a human would not notice any difference between the modified and unmodified images, proceed by creating adversarial noise in the 224×244 resized domain and not in the high-resolution domain. The complexity of directly attacking high-resolution images leads to challenges in terms of speed, adversity and visual quality, making these attacks infeasible in practice. We design an indirect attack strategy that lifts to the high-resolution domain any existing attack that works efficiently in the CNN's input size domain. Adversarial noise created via this method is of the same size as the original image. We apply this approach to 10 state-of-the-art CNNs trained on ImageNet, with an evolutionary algorithm-based attack. Our method succeeded in 900 out of 1000 trials to create such adversarial images, that CNNs classify with probability ≥0.55 in the adversarial category. Our indirect attack is the first effective method at creating adversarial images in the high-resolution domain.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LEPREVOST, Franck ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
TOPAL, Ali Osman ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Avdusinovic, Elmir
CHITIC, Ioana Raluca ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A strategy creating high-resolution adversarial images against convolutional neural networks and a feasibility study on 10 CNNs
Date de publication/diffusion :
22 octobre 2022
Titre du périodique :
Journal of Information and Telecommunication
ISSN :
2475-1839
eISSN :
2475-1847
Maison d'édition :
Taylor & Francis Group, Royaume-Uni
Volume/Tome :
7
Fascicule/Saison :
1
Pagination :
89-119
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 29 mai 2023

Statistiques


Nombre de vues
183 (dont 6 Unilu)
Nombre de téléchargements
56 (dont 4 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
0
OpenCitations
 
0
citations OpenAlex
 
2
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu