Adler, R.J., Taylor, J.E., Random Fields and Geometry Springer Monographs in Mathematics, 2007, Springer 2007.
Anh, V., Leonenko, N., Olenko, A., On the rate of convergence to Rosenblatt-type distribution. J. Math. Anal. Appl. 425:1 (2015), 111–132.
Avram, F., Leonenko, N., Sakhno, L., Limit theorems for additive functionals of stationary fields, under integrability assumptions on the higher order spectral densities. Stoch. Process. Appl. 125:4 (2015), 1629–1652.
Ben Hariz, S., Limit theorems for the non-linear functional of stationary Gaussian processes. J. Multivariate Anal. 80:2 (2002), 191–216.
Berry, M.V., Regular and irregular semiclassical wavefunctions. J. Phys. A 10:12 (1977), 2083–2091.
Bingham, N.H., Goldie, C.M., Teugels, J.L., (eds.) Regular Variation Encyclopedia of Mathematics and Its Applications, 1987, Cambridge University Press.
Brandolini, L., Hofmann, S., Iosevich, A., Sharp rate of average decay of the Fourier transform of a bounded set. Geom. Funct. Anal. 13 (2003), 67–680.
Breuer, P., Major, P., Central limit theorems fornon-linear functionals of Gaussian fields. J. Mult. Anal. 13 (1983), 425–441.
Campese, S., Nourdin, I., Nualart, D., Continuous Breuer-Major theorem: Tightness and nonstationarity. Ann. Probab. 48:1 (2020), 147–177.
Dierickx, G., Nourdin, I., Peccati, G., Rossi, M., Small scale CLTs for the nodal length of monochromatic waves. Comm. Math. Phys. 397:1 (2023), 1–36.
Dobrushin, R.L., Major, P., Non-central limit theorems for nonlinear func-tionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 50:1 (1979), 27–52.
Donhauzer, I., Olenko, A., Volodin, A., Strong law of large numbers for functionals of random fields with unboundedly increasing covariances. Comm. Statist. Theory Methods 51:20 (2022), 6947–6962.
Galerne, B., Computation of the perimeter of measurable sets via their covariogram, applications to random sets. Image Anal. Stereol. 30 (2011), 39–51.
Grotto, F., Maini, L., Todino, A.P., Fluctuations of polyspectra in euclidean and spherical random wave models. 2023 https://arxiv.org/abs/2303.09506.
Ivanov, A.V., Leonenko, N., Statistical Analysis of Random Fields Mathematics and its Applications (MASS), vol. 28, 1989, Springer.
Kampf, J., Spodarev, E., A functional central limit theorem for integrals of stationary mixing random fields. Teoriya Veroyatnosteĭ i ee Primeneniya 63 (2018), 167–185.
Krasikov, I., Approximations for the Bessel and airy functions with an explicit error term. LMS J. Comput. Math. 17:1 (2014), 209–225.
Leonenko, N., Olenko, A., Tauberian and abelian theorems for long-range dependent random fields. Methodol. Comput. Appl. Probab 15:4 (2013), 715–742.
Leonenko, N., Olenko, A., Sojourn measures of student and Fisher-Snedecor random fields. Bernoulli 20 (2014), 1454–1483.
Leonenko, N., Ruiz-Medina, M.D., Sojourn functionals for spatiotemporal Gaussian random fields with long memory. J. Appl. Probab. 60:1 (2023), 148–165.
Maini, L., Nourdin, I., Spectral central limit theorem for additive functionals of isotropic and stationary Gaussian fields. Ann. Probab., 2022 in press, https://arxiv.org/abs/2206.14458.
Mishura, Y., Yoshidae, N., Divergence of an integral of a process with small ball estimate. Stoch. Process. Appl. 148 (2022), 1–24.
Nourdin, I., Peccati, G., Stein's method on Wiener chaos. Probab. Theory Related Fields 145 (2009), 75–118.
Nourdin, I., Peccati, G., Normal Approximations with Malliavin Calculus: From Stein's Method to Universality Cambridge Tracts in Mathematics, vol. 192, 2012, Cambridge University Press, Cambridge, xiv+239.
Nourdin, I., Peccati, G., Podolskij, M., Quantitative Breuer-Major theorems. Stoch. Proc. Appl. 121:4 (2011), 793–812.
Nourdin, I., Peccati, G., Rossi, M., Nodal statistics of planar random waves. Comm. Math. Phys. 369 (2019), 99–151.
Nualart, D., Zheng, G., Oscillatory Breuer-Major theorem with application to the random corrector problem. Asymptot. Anal. 119 (2020), 281–300.
Peccati, G., Tudor, C.A., Gaussian limits for vector-valued multiple stochastic integrals. Sem. de Probab. XXXVIII Lecture Notes in Math, vol. 1857, 2005, Springer, Berlin, 247–262 2005.
Peccati, G., Vidotto, A., Gaussian random measures generated by Berry's nodal sets. J. Stat. Phys. 178:4 (2020), 996–1027.
Réveillac, A., Stauch, M., Tudor, C.A., Hermite variations of the fractional Brownian sheet. Stoch. Dyn. 12 (2010), 1–21 Stochastics and Dynamics.
Rosenblatt, M., Independence and dependence. Proc. 4th Berkeley Sympos. Math. Statist. and Prob. II, 1961, Univ. California Press, Berkeley, Calif, 431–443.
Schoenberg, I.J., Metric Spaces and Completely Monotone Functions Annals of Mathematics, vol. 4, 1938, Princeton University, 811–841 1938.
Taqqu, M., Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheor. Verwandte Geb. 50:1 (1979), 53–83.
Tudor, C.A., Analysis of Variations for Self-Similar Processes. 2013, Springer.
Tudor, C.A., Viens, F.G., Variations and estimators for self-similarity parameters via Malliavin calculus. Ann. Probab. 37:6 (2009), 2093–2134.
Vidotto, A., A note on the reduction principle for the nodal length of planar random waves. Statist. Probab. Lett., 174, 2021.
Wang, W., Almost-sure path properties of fractional Brownian sheet. Annales de l'Institut Henri Poincaré 43:5 (2007), 619–631.