[en] Graphene is an ideal platform to study the coherence of quantum interference pathways by tuning doping or laser excitation energy. The latter produces a Raman excitation profile that provides direct insight into the lifetimes of intermediate electronic excitations and, therefore, on quantum interference, which has so far remained elusive. Here, we control the Raman scattering pathways by tuning the laser excitation energy in graphene doped up to 1.05 eV. The Raman excitation profile of the G mode indicates its position and full width at half-maximum are linearly dependent on doping. Doping-enhanced electron–electron interactions dominate the lifetimes of Raman scattering pathways and reduce Raman interference. This will provide guidance for engineering quantum pathways for doped graphene, nanotubes, and topological insulators.
Disciplines :
Physique
Auteur, co-auteur :
Chen, Xue
REICHARDT, Sven ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Lin, Miao-Ling
Leng, Yu-Chen
Lu, Yan
Wu, Heng
Mei, Rui
WIRTZ, Ludger ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Zhang, Xin
Ferrari, Andrea C.
Tan, Ping-Heng
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Control of Raman Scattering Quantum Interference Pathways in Graphene
Date de publication/diffusion :
2023
Titre du périodique :
ACS Nano
ISSN :
1936-0851
eISSN :
1936-086X
Maison d'édition :
American Chemical Society
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Projet FnR :
FNR14802965 - Resonant Raman Scattering Dynamics From First Principles, 2020 (01/05/2021-30/04/2024) - Sven Reichardt
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliographie
Ficek, Z.; Swain, S. Quantum Interference and Coherence: Theory and Experiments; Springer: New York, 2005; Chapter 1, pp 1- 44.
Liu, R. C.; Odom, B.; Yamamoto, Y.; Tarucha, S. Quantum Interference in Electron Collision. Nature 1998, 391, 263- 265, 10.1038/34611
Guédon, C. M.; Valkenier, H.; Markussen, T.; Thygesen, K. S.; Hummelen, J. C.; van der Molen, S. J. Observation of Quantum Interference in Molecular Charge Transport. Nat. Nanotechnol. 2012, 7, 305- 309, 10.1038/nnano.2012.37
Greenwald, J. E.; Cameron, J.; Findlay, N. J.; Fu, T.; Gunasekaran, S.; Skabara, P. J.; Venkataraman, L. Highly Nonlinear Transport Across Single-Molecule Junctions via Destructive Quantum Interference. Nat. Nanotechnol. 2021, 16, 313- 317, 10.1038/s41565-020-00807-x
Glazov, M. M. Quantum Interference Effect on Exciton Transport in Monolayer Semiconductors. Phys. Rev. Lett. 2020, 124, 166802, 10.1103/PhysRevLett.124.166802
Stojetz, B.; Miko, C.; Forró, L.; Strunk, C. Effect of Band Structure on Quantum Interference in Multiwall Carbon Nanotubes. Phys. Rev. Lett. 2005, 94, 186802, 10.1103/PhysRevLett.94.186802
Xie, Y.; Zhao, H.; Wang, Y.; Huang, Y.; Wang, T.; Xu, X.; Xiao, C.; Sun, Z.; Zhang, D. H.; Yang, X. Quantum Interference in H+HD → H2+D Between Direct Abstraction and Roaming Insertion Pathways. Science 2020, 368, 767- 771, 10.1126/science.abb1564
Chen, C.-F.; Park, C.-H.; Boudouris, B. W.; Horng, J.; Geng, B.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G.; Wang, F. Controlling Inelastic Light Scattering Quantum Pathways in Graphene. Nature 2011, 471, 617, 10.1038/nature09866
Duque, J. G.; Telg, H.; Chen, H.; Swan, A. K.; Shreve, A. P.; Tu, X.; Zheng, M.; Doorn, S. K. Quantum Interference Between the Third and Fourth Exciton States in Semiconducting Carbon Nanotubes Using Resonance Raman Spectroscopy. Phys. Rev. Lett. 2012, 108, 117404, 10.1103/PhysRevLett.108.117404
Gu, P.; Tan, Q.; Wan, Y.; Li, Z.; Peng, Y.; Lai, J.; Ma, J.; Yao, X.; Yang, S.; Yuan, K.; Sun, D.; Peng, B.; Zhang, J.; Ye, Y. Photoluminescent Quantum Interference in a van der Waals Magnet Preserved by Symmetry Breaking. ACS Nano 2020, 14, 1003- 1010, 10.1021/acsnano.9b08336
Pinczuk, A.; Burstein, E. Light Scattering in Solids I; Springer-Verlag: Berlin, Heidelberg, 1983; Chapter 2, pp 25- 75.
Reichardt, S.; Wirtz, L. Ab Initio Calculation of the G peak Intensity of Graphene: Laser-Energy and Fermi-Energy Dependence and Importance of Quantum Interference Effects. Phys. Rev. B 2017, 95, 195422, 10.1103/PhysRevB.95.195422
Basko, D. M. Calculation of the Raman G Peak Intensity in Monolayer Graphene: Role of Ward Identities. New J. Phys. 2009, 11, 095011, 10.1088/1367-2630/11/9/095011
Liu, J.; Li, Q.; Zou, Y.; Qian, Q.; Jin, Y.; Li, G.; Jiang, K.; Fan, S. The Dependence of Graphene Raman D-Band on Carrier Density. Nano Lett. 2013, 13, 6170- 6175, 10.1021/nl4035048
Ralston, J. M.; Wadsack, R. L.; Chang, R. K. Resonant Cancelation of Raman Scattering From CdS and Si. Phys. Rev. Lett. 1970, 25, 814- 818, 10.1103/PhysRevLett.25.814
Liu, K.; Hong, X.; Wu, M.; Xiao, F.; Wang, W.; Bai, X.; Ager, J. W.; Aloni, S.; Zettl, A.; Wang, E.; Wang, F. Quantum-Coupled Radial-Breathing Oscillations in Double-Walled Carbon Nanotubes. Nat. Commun. 2013, 4, 1375, 10.1038/ncomms2367
Maultzsch, J.; Reich, S.; Thomsen, C. Double-Resonant Raman Scattering in Graphite: Interference Effects, Selection Rules, and Phonon Dispersion. Phys. Rev. B 2004, 70, 155403, 10.1103/PhysRevB.70.155403
Kalbac, M.; Reina-Cecco, A.; Farhat, H.; Kong, J.; Kavan, L.; Dresselhaus, M. S. The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene. ACS Nano 2010, 4, 6055- 6063, 10.1021/nn1010914
Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235- 246, 10.1038/nnano.2013.46
Hasdeo, E. H.; Nugraha, A. R. T.; Dresselhaus, M. S.; Saito, R. Fermi Energy Dependence of First- and Second-Order Raman Spectra in Graphene: Kohn Anomaly and Quantum Interference Effect. Phys. Rev. B 2016, 94, 075104, 10.1103/PhysRevB.94.075104
Golasa, K.; Grzeszczyk, M.; Molas, M. R.; Zinkiewicz, M.; Bala, L.; Nogajewski, K.; Potemski, M.; Wysmolek, A.; Babinski, A. Resonant Quenching of Raman Scattering Due to Out-of-Plane A1g/A1′ Modes in Few-Layer MoTe2. Nanophotonics 2017, 6, 1281- 1288, 10.1515/nanoph-2016-0150
Miranda, H. P. C.; Reichardt, S.; Froehlicher, G.; Molina-Sanchez, A.; Berciaud, S.; Wirtz, L. Quantum Interference Effects in Resonant Raman Spectroscopy of Single- and Triple-Layer MoTe2 From First-Principles. Nano Lett. 2017, 17, 2381- 2388, 10.1021/acs.nanolett.6b05345
Bonacum, J. P.; O’Hara, A.; Bao, D.-L.; Ovchinnikov, O. S.; Zhang, Y.-F.; Gordeev, G.; Arora, S.; Reich, S.; Idrobo, J.-C.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Atomic-Resolution Visualization and Doping Effects of Complex Structures in Intercalated Bilayer Graphene. Phys. Rev. Mater. 2019, 3, 064004, 10.1103/PhysRevMaterials.3.064004
Zhao, W.-J.; Tan, P.-H.; Liu, J.; Ferrari, A. C. Intercalation of Few-Layer Graphite Flakes with FeCl3: Raman Determination of Fermi Level, Layer by Layer Decoupling, and Stability. J. Am. Chem. Soc. 2011, 133, 5941- 5946, 10.1021/ja110939a
Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of Double-Resonant Raman Spectra in Graphene: Intensity and Line Shape of Defect-Induced and Two-Phonon Bands. Phys. Rev. B 2011, 84, 035433, 10.1103/PhysRevB.84.035433
Hwang, E. H.; Hu, B. Y.-K.; Das Sarma, S. Inelastic Carrier Lifetime in Graphene. Phys. Rev. B 2007, 76, 115434, 10.1103/PhysRevB.76.115434
Basko, D. M.; Piscanec, S.; Ferrari, A. C. Electron-Electron Interactions and Doping Dependence of The Two-Phonon Raman Intensity in Graphene. Phys. Rev. B 2009, 80, 165413, 10.1103/PhysRevB.80.165413
Basko, D. M. Theory of Resonant Multiphonon Raman Scattering in Graphene. Phys. Rev. B 2008, 78, 125418, 10.1103/PhysRevB.78.125418
Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.; Waghmare, U.; Novoselov, K.; Krishnamurthy, H.; Geim, A.; Ferrari, A. Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor. Nat. Nanotechnol. 2008, 3, 210- 215, 10.1038/nnano.2008.67
Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the Adiabatic Born-Oppenheimer Approximation in Graphene. Nat. Mater. 2007, 6, 198- 201, 10.1038/nmat1846
Cançado, L. G.; Jorio, A.; Pimenta, M. A. Measuring the Absolute Raman Cross Section of Nanographites as a Function of Laser Energy and Crystallite Size. Phys. Rev. B 2007, 76, 064304, 10.1103/PhysRevB.76.064304
Klar, P.; Lidorikis, E.; Eckmann, A.; Verzhbitskiy, I. A.; Ferrari, A. C.; Casiraghi, C. Raman Scattering Efficiency of Graphene. Phys. Rev. B 2013, 87, 205435, 10.1103/PhysRevB.87.205435
Dresselhaus, M. S.; Dresselhaus, G. Intercalation Compounds of Graphite. Adv. Phys. 2002, 51, 1- 186, 10.1080/00018730110113644
Reichardt, S.; Wirtz, L. Nonadiabatic Exciton-Phonon Coupling in Raman Spectroscopy of Layered Materials. Sci. Adv. 2020, 6, eabb5915, 10.1126/sciadv.abb5915
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L. QUANTUM ESPRESSO: a Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 395502, 10.1088/0953-8984/21/39/395502
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G. Advanced Capabilities for Materials Modelling With Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901, 10.1088/1361-648X/aa8f79
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865, 10.1103/PhysRevLett.77.3865
Mostofi, A. A.; Yates, J. R.; Pizzi, G.; Lee, Y.-S.; Souza, I.; Vanderbilt, D.; Marzari, N. An Updated Version of Wannier 90: A Tool for Obtaining Maximally-Localised Wannier Functions. Comput. Phys. Commun. 2014, 185, 2309- 2310, 10.1016/j.cpc.2014.05.003
Giustino, F.; Cohen, M. L.; Louie, S. G. Electron-Phonon Interaction Using Wannier Functions. Phys. Rev. B 2007, 76, 165108, 10.1103/PhysRevB.76.165108
Poncé, S.; Margine, E. R.; Verdi, C.; Giustino, F. EPW: Electron-Phonon Coupling, Transport and Superconducting Properties Using Maximally Localized Wannier Functions. Comput. Phys. Commun. 2016, 209, 116- 133, 10.1016/j.cpc.2016.07.028