interlayer exciton; exciton phonon coupling; transition metal dichalcogenides
Résumé :
[en] We demonstrate the possibility of engineering the optical properties of transition metal dichalcogenide heterobilayers when one of the constitutive layers has a Janus structure. We investigate different MoS2@Janus layer combinations using first-principles methods including excitons and exciton–phonon coupling. The direction of the intrinsic electric field from the Janus layer modifies the electronic band alignments and, consequently, the energy separation between dark interlayer exciton states and bright in-plane excitons. We find that in-plane lattice vibrations strongly couple the two states, so that exciton–phonon scattering may be a viable generation mechanism for interlayer excitons upon light absorption. In particular, in the case of MoS2@WSSe, the energy separation of the low-lying interlayer exciton from the in-plane exciton is resonant with the transverse optical phonon modes (40 meV). We thus identify this heterobilayer as a prime candidate for efficient generation of charge-separated electron–hole pairs.
Disciplines :
Physique
Auteur, co-auteur :
Torun, Engin
Paleari, Fulvio
Milosevic, Milorad V.
WIRTZ, Ludger ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Sevik, Cem
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Intrinsic Control of Interlayer Exciton Generation in Van der Waals Materials via Janus Layers
Date de publication/diffusion :
2023
Titre du périodique :
Nano Lett.
ISSN :
1530-6984
eISSN :
1530-6992
Maison d'édition :
American Chemical Society
Peer reviewed :
Peer reviewed
Focus Area :
Physics and Materials Science
Projet FnR :
FNR13376969 - Anharmonic And Exchange Interactions In Phonon Spectra, 2018 (01/01/2020-30/06/2024) - Ludger Wirtz
He, K.; Kumar, N.; Zhao, L.; Wang, Z.; Mak, K. F.; Zhao, H.; Shan, J. Tightly Bound Excitons in Monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803, 10.1103/PhysRevLett.113.026803
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805, 10.1103/PhysRevLett.105.136805
Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271- 1275, 10.1021/nl903868w
Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. Annu. Rev. Mater. Res. 2015, 45, 1- 27, 10.1146/annurev-matsci-070214-021034
Molina-Sánchez, A.; Sangalli, D.; Hummer, K.; Marini, A.; Wirtz, L. Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2. Phys. Rev. B 2013, 88, 045412, 10.1103/PhysRevB.88.045412
Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett. 2013, 111, 216805, 10.1103/PhysRevLett.111.216805
Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802, 10.1103/PhysRevLett.113.076802
Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001, 10.1103/RevModPhys.90.021001
Sidler, M.; Back, P.; Cotleţ, O.; Srivastava, A.; Fink, T.; Kroner, M.; Demler, E.; Imamoglu, A. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 2017, 13, 255- 261, 10.1038/nphys3949
Kogar, A.; Rak, M. S.; Vig, S.; Husain, A. A.; Flicker, F.; Joe, Y. I.; Venema, L.; MacDougall, G. J.; Chiang, T. C.; Fradkin, E.; van Wezel, J.; Abbamonte, P. Signatures of exciton condensation in a transition metal dichalcogenide. Science 2017, 358, 1314- 1317, 10.1126/science.aam6432
Cotlet, O.; Zeytinoğlu, S.; Sigrist, M.; Demler, E.; Imamoğlu, A. Superconductivity and other collective phenomena in a hybrid Bose-Fermi mixture formed by a polariton condensate and an electron system in two dimensions. Phys. Rev. B 2016, 93, 054510, 10.1103/PhysRevB.93.054510
Cui, Y.; Zhou, Z.; Li, T.; Wang, K.; Li, J.; Wei, Z. Versatile Crystal Structures and (Opto)electronic Applications of the 2D Metal Mono-, Di-, and Tri-Chalcogenide Nanosheets. Adv. Funct. Mater. 2019, 29, 1900040, 10.1002/adfm.201900040
Wang, J.; Verzhbitskiy, I.; Eda, G. Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides. Adv. Mater. 2018, 30, 1802687, 10.1002/adma.201802687
Atatüre, M.; Englund, D.; Vamivakas, N.; Lee, S.-Y.; Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nature Reviews Materials 2018, 3, 38- 51, 10.1038/s41578-018-0008-9
Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; Cobden, D. H.; Xu, X. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nature Nanotechnol. 2014, 9, 268- 272, 10.1038/nnano.2014.26
Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nature Nanotechnol. 2014, 9, 262- 267, 10.1038/nnano.2014.25
Jones, A. M.; Yu, H.; Ghimire, N. J.; Wu, S.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J.; Mandrus, D. G.; Xiao, D.; Yao, W.; Xu, X. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634- 638, 10.1038/nnano.2013.151
Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802, 10.1103/PhysRevLett.108.196802
Kang, J.; Tongay, S.; Zhou, J.; Li, J.; Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111, 10.1063/1.4774090
Gillen, R.; Maultzsch, J. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles. Phys. Rev. B 2018, 97, 165306, 10.1103/PhysRevB.97.165306
Deilmann, T.; Thygesen, K. S. Interlayer Excitons with Large Optical Amplitudes in Layered van der Waals Materials. Nano Lett. 2018, 18, 2984- 2989, 10.1021/acs.nanolett.8b00438
Torun, E.; Miranda, H. P. C.; Molina-Sánchez, A.; Wirtz, L. Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers. Phys. Rev. B 2018, 97, 245427, 10.1103/PhysRevB.97.245427
Van der Donck, M.; Peeters, F. M. Interlayer excitons in transition metal dichalcogenide heterostructures. Phys. Rev. B 2018, 98, 115104, 10.1103/PhysRevB.98.115104
Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton Radiative Lifetimes in Two-Dimensional Transition Metal Dichalcogenides. Nano Lett. 2015, 15, 2794- 2800, 10.1021/nl503799t
Chen, H.; Wen, X.; Zhang, J.; Wu, T.; Gong, Y.; Zhang, X.; Yuan, J.; Yi, C.; Lou, J.; Ajayan, P. M. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512- 12512, 10.1038/ncomms12512
Kozawa, D.; Carvalho, A.; Verzhbitskiy, I.; Giustiniano, F.; Miyauchi, Y.; Mouri, S.; Castro Neto, A. H.; Matsuda, K.; Eda, G. Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures. Nano Lett. 2016, 16, 4087- 4093, 10.1021/acs.nanolett.6b00801
Schaibley, J. R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nature Reviews Materials 2016, 1, 16055, 10.1038/natrevmats.2016.55
Molina-Sánchez, A.; Sangalli, D.; Wirtz, L.; Marini, A. Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2. Nano Lett. 2017, 17, 4549- 4555, 10.1021/acs.nanolett.7b00175
Ovesen, S.; Brem, S.; Linderälv, C.; Kuisma, M.; Korn, T.; Erhart, P.; Selig, M.; Malic, E. Interlayer exciton dynamics in van der Waals heterostructures. Communications Physics 2019, 2, 23, 10.1038/s42005-019-0122-z
Montblanch, A. R.-P.; Kara, D. M.; Paradisanos, I.; Purser, C. M.; Feuer, M. S. G.; Alexeev, E. M.; Stefan, L.; Qin, Y.; Blei, M.; Wang, G. Confinement of long-lived interlayer excitons in WS2/WSe2 heterostructures. Communications Physics 2021, 4, 119, 10.1038/s42005-021-00625-0
Fang, H. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Science 2014, 111, 6198- 6202, 10.1073/pnas.1405435111
Heo, H.; Sung, J. H.; Cha, S.; Jang, B.-G.; Kim, J.-Y.; Jin, G.; Lee, D.; Ahn, J.-H.; Lee, M.-J.; Shim, J. H.; Choi, H.; Jo, M.-H. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 2015, 6, 7372, 10.1038/ncomms8372
Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J.-U.; Ma, K. Y.; Jang, A.-R.; Lim, H.; Kim, D.; Ryu, S.; Cheong, H.; Park, N.; Shin, H. S. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. ACS Nano 2017, 11, 4041- 4050, 10.1021/acsnano.7b00640
Gao, S.; Yang, L.; Spataru, C. D. Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide Heterostructures. Nano Lett. 2017, 17, 7809- 7813, 10.1021/acs.nanolett.7b04021
Lu, A. K. A.; Houssa, M.; Luisier, M.; Pourtois, G. Impact of Layer Alignment on the Behavior of MoS2-ZrS2 Tunnel Field-Effect Transistors: An Ab Initio Study. Phys. Rev. Applied 2017, 8, 034017, 10.1103/PhysRevApplied.8.034017
Peimyoo, N.; Deilmann, T.; Withers, F.; Escolar, J.; Nutting, D.; Taniguchi, T.; Watanabe, K.; Taghizadeh, A.; Craciun, M. F.; Thygesen, K. S.; Russo, S. Electrical tuning of optically active interlayer excitons in bilayer MoS2. Nat. Nanotechnol. 2021, 16, 888- 893, 10.1038/s41565-021-00916-1
Dong, L.; Lou, J.; Shenoy, V. B. Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. ACS Nano 2017, 11, 8242- 8248, 10.1021/acsnano.7b03313
Qin, Y.; Sayyad, M.; Montblanch, A. R.-P.; Feuer, M. S. G.; Dey, D.; Blei, M.; Sailus, R.; Kara, D. M.; Shen, Y.; Yang, S.; Botana, A. S.; Atature, M.; Tongay, S. Reaching the Excitonic Limit in 2D Janus Monolayers by In Situ Deterministic Growth. Adv. Mater. 2022, 34, 2106222, 10.1002/adma.202106222
Zhang, X.; Pang, R.; Hou, X.; Wang, S. Stacking-tailoring quasiparticle energies and interlayer excitons in bilayer Janus MoSSe. New J. Phys. 2021, 23, 013003, 10.1088/1367-2630/abd205
Trivedi, D. B. Room-Temperature Synthesis of 2D Janus Crystals and their Heterostructures. Adv. Mater. 2020, 32, 2006320, 10.1002/adma.202006320
Li, F.; Wei, W.; Huang, B.; Dai, Y. Excited-State Properties of Janus Transition-Metal Dichalcogenides. J. Phys. Chem. C 2020, 124, 1667- 1673, 10.1021/acs.jpcc.9b09097
Peng, R.; Ma, Y.; Zhang, S.; Huang, B.; Dai, Y. Valley Polarization in Janus Single-Layer MoSSe via Magnetic Doping. J. Phys. Chem. Lett. 2018, 9, 3612- 3617, 10.1021/acs.jpclett.8b01625
Jin, C.; Tang, X.; Tan, X.; Smith, S. C.; Dai, Y.; Kou, L. A Janus MoSSe monolayer: a superior and strain-sensitive gas sensing material. J. Mater. Chem. A 2019, 7, 1099- 1106, 10.1039/C8TA08407F
Li, L.; Li, B.; Guo, Q.; Li, B. Theoretical Screening of Single-Atom-Embedded MoSSe Nanosheets for Electrocatalytic N2 Fixation. J. Phys. Chem. C 2019, 123, 14501- 14507, 10.1021/acs.jpcc.9b02657
Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; Ferretti, A.; Marzari, N.; Timrov, I.; Urru, A.; Baroni, S. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105, 10.1063/5.0005082
Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515- 562, 10.1103/RevModPhys.73.515
Marini, A.; Hogan, C.; Gruning, M.; Varsano, D. yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 2009, 180, 1392- 1403, 10.1016/j.cpc.2009.02.003
Sangalli, D. Many-body perturbation theory calculations using the yambo code. J. Phys.: Condens. Matter 2019, 31, 325902, 10.1088/1361-648X/ab15d0
Hedin, L.; Lundqvist, S. In Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids; Seitz, F., Turnbull, D., Ehrenreich, H., Eds.; Solid State Physics; Academic Press, 1970; Vol. 23; pp 1- 181.
Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. Phys. Rev. B 2006, 73, 233103, 10.1103/PhysRevB.73.233103
Cudazzo, P. First-principles description of the exciton-phonon interaction: A cumulant approach. Phys. Rev. B 2020, 102, 045136, 10.1103/PhysRevB.102.045136
Kandemir, A.; Sahin, H. Bilayers of Janus WSSe: monitoring the stacking type via the vibrational spectrum. Phys. Chem. Chem. Phys. 2018, 20, 17380- 17386, 10.1039/C8CP02802H
Yin, W.-J.; Wen, B.; Nie, G.-Z.; Wei, X.-L.; Liu, L.-M. Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J. Mater. Chem. C 2018, 6, 1693- 1700, 10.1039/C7TC05225A
Li, F.; Wei, W.; Zhao, P.; Huang, B.; Dai, Y. Electronic and Optical Properties of Pristine and Vertical and Lateral Heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 2017, 8, 5959- 5965, 10.1021/acs.jpclett.7b02841
Yin, W.; Wen, B.; Ge, Q.; Zou, D.; Xu, Y.; Liu, M.; Wei, X.; Chen, M.; Fan, X. Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study. Progress in Natural Science: Materials International 2019, 29, 335- 340, 10.1016/j.pnsc.2019.05.003
Martin, R. M.; Reining, L.; Ceperley, D. M. Interacting Electrons - Theory and Computational Approaches; Cambridge University Press, 2016; pp 345- 387.
Chen, H.-Y.; Sangalli, D.; Bernardi, M. First-principles ultrafast exciton dynamics and time-domain spectroscopies: Dark-exciton mediated valley depolarization in monolayer WSe2. Phys. Rev. Res. 2022, 4, 043203, 10.1103/PhysRevResearch.4.043203
Xu, X.; Jiang, X.; Gao, Q.; Yang, L.; Sun, X.; Wang, Z.; Li, D.; Cui, B.; Liu, D. Enhanced photoelectric performance of MoSSe/MoS2 van der Waals heterostructures with tunable multiple band alignment. Phys. Chem. Chem. Phys. 2022, 24, 29882- 29890, 10.1039/D2CP03761K
Reichardt, S.; Wirtz, L. Nonadiabatic exciton-phonon coupling in Raman spectroscopy of layered materials. Sci. Adv. 2020, 6, eabb5915 10.1126/sciadv.abb5915
Chen, H.-Y.; Sangalli, D.; Bernardi, M. Exciton-Phonon Interaction and Relaxation Times from First Principles. Phys. Rev. Lett. 2020, 125, 107401, 10.1103/PhysRevLett.125.107401
Antonius, G.; Louie, S. G. Theory of exciton-phonon coupling. Phys. Rev. B 2022, 105, 085111, 10.1103/PhysRevB.105.085111
Paleari, F.; Marini, A. Exciton-phonon interaction calls for a revision of the “exciton” concept. Phys. Rev. B 2022, 106, 125403, 10.1103/PhysRevB.106.125403
Molina-Sánchez, A.; Hummer, K.; Wirtz, L. Vibrational and optical properties of MoS2: From monolayer to bulk. Surf. Sci. Rep. 2015, 70, 554- 586, 10.1016/j.surfrep.2015.10.001
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865- 3868, 10.1103/PhysRevLett.77.3865
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 2013, 88, 085117, 10.1103/PhysRevB.88.085117
van Setten, M.; Giantomassi, M.; Bousquet, E.; Verstraete, M.; Hamann, D.; Gonze, X.; Rignanese, G.-M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39- 54, 10.1016/j.cpc.2018.01.012
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787- 1799, 10.1002/jcc.20495
Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comput. Chem. 2009, 30, 934- 939, 10.1002/jcc.21112
Hernandez, V.; Roman, J. E.; Vidal, V. SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems. ACM Trans. Math. Softw. 2005, 31, 351- 362, 10.1145/1089014.1089019
Sohier, T.; Calandra, M.; Mauri, F. Density functional perturbation theory for gated two-dimensional heterostructures: Theoretical developments and application to flexural phonons in graphene. Phys. Rev. B 2017, 96, 075448, 10.1103/PhysRevB.96.075448