Eprint diffusé en premier sur ORBilu (E-prints, Working papers et Carnets de recherche)
Industrial defect detection on the edge with deep learning over scarcely labeled and extremely imbalanced data
LORENTZ, Joe; Hartmann, Thomas; Moawad, Assaad et al.
n.d.
 

Documents


Texte intégral
pre-print.pdf
Preprint Auteur (5.71 MB)
This is a pre-print version of the article that is currently undergoing peer review
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
quality assurance; edge computation; semi-supervised learning; imbalanced data
Résumé :
[en] Abstract—Reliable automated defect detection is an integral part of modern manufacturing and improved performance can provide a competitive advantage. Despite the proven capabilities of convolutional neural networks (CNNs) for image classification, application on real world tasks remains challenging due to the high demand for labeled and well balanced data of the common supervised learning scheme. Semi-supervised learning (SSL) promises to achieve comparable accuracy while only requiring a small fraction of the training samples to be labeled. However, SSL methods struggle with data imbalance and existing benchmarks do not reflect the challenges of real world applications. In this work we present a CNN-based defect detection unit for thermal sensors. We describe how to collect data from a running process and release our dataset of 1k labeled and 293k unlabeled samples. Furthermore, we investigate the use of SSL under this challenging real world task.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LORENTZ, Joe ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Hartmann, Thomas
Moawad, Assaad
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Langue du document :
Anglais
Titre :
Industrial defect detection on the edge with deep learning over scarcely labeled and extremely imbalanced data
Date de publication/diffusion :
n.d.
Focus Area :
Computational Sciences
Projet FnR :
FNR14297122 - Towards Edge-optimized Deep Learning For Explainable Quality Control, 2019 (01/01/2020-31/12/2023) - Joe Lorentz
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 11 avril 2023

Statistiques


Nombre de vues
139 (dont 1 Unilu)
Nombre de téléchargements
193 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu