Eprint diffusé en premier sur ORBilu (E-prints, Working papers et Carnets de recherche)
Tropical Backpropagation
CEYHAN, Özgür; LUCCHETTI, Federico
2023
 

Documents


Texte intégral
Tropical_Backpropagation-1.pdf
Preprint Auteur (335.69 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] This work introduces tropicalization, a novel technique that delivers tropical neural networks as tropical limits of deep ReLU networks. Tropicalization transfers the initial weights from real numbers to those in the tropical semiring while maintain- ing the underlying graph of the network. After verifying that tropicalization will not affect the classification capacity of deep neural networks, this study introduces a tropical reformulation of backpropagation via tropical linear algebra. Tropical arithmetic replaces multiplication operations in the network with additions and addition operations with max, and therefore, theoretically, reduces the algorithmic complexity during the training and inference phase. We demonstrate the latter by simulating the tensor multiplication underlying the feed-forward process of state- of-the-art trained neural network architectures and compare the standard forward pass of the models with the tropical ones. Our benchmark results show that tropi- calization speeds up inference by 50 %. Hence, we conclude that tropicalization bears the potential to reduce the training times of large neural networks drastically.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CEYHAN, Özgür ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
LUCCHETTI, Federico ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX
Langue du document :
Anglais
Titre :
Tropical Backpropagation
Date de publication/diffusion :
2023
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 06 avril 2023

Statistiques


Nombre de vues
336 (dont 19 Unilu)
Nombre de téléchargements
260 (dont 6 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu