Article (Périodiques scientifiques)
Results and Lessons Learned from the sbv IMPROVER Metagenomics Diagnostics for Inflammatory Bowel Disease Challenge
Khachatryan, Lusine; Xiang, Yang; Ivanov, Artem et al.
2023In Scientific Reports, in press
Peer reviewed
 

Documents


Texte intégral
s41598-023-33050-0.pdf
Postprint Éditeur (6.36 MB)
Télécharger

The original publication is available at: https://doi.org/10.1038/s41598-023-33050-0


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Gut microbiota; Inflammatory bowel disease; Metagenomics; Non-invasive diagnostics; Diagnosis; Crohn's Disease; Ulcerative Colitis; classification; supervised; machine learning
Résumé :
[en] A growing body of evidence links gut microbiota changes with inflammatory bowel disease (IBD), raising the potential benefit of exploiting metagenomics data for non-invasive IBD diagnostics. The sbv IMPROVER Metagenomics Diagnosis for Inflammatory Bowel Disease Challenge (MEDIC) investigated computational metagenomics methods for discriminating IBD and nonIBD subjects. Participants in this challenge were given independent training and test metagenomics data from IBD and nonIBD subjects, which could be wither either raw read data (sub-challenge 1, SC1) or processed taxonomy- and function-based profiles (sub-challenge 2, SC2). A total of 81 anonymized submissions were received between September 2019 and March 2020. Most participants’ predictions performed better than random predictions in classifying IBD vs nonIBD, Ulcerative Colitis (UC) vs nonIBD, and Crohn’s Disease (CD) vs nonIBD. However, discrimination between UC and CD remains challenging, with the classification quality similar to the set of random predictions. We analyzed the class prediction accuracy, the metagenomics features by the teams, and computational methods used. These results will be openly shared with the scientific community to help advance IBD research and illustrate the application of a range of computational methodologies for effective metagenomic classification.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Immunologie & maladie infectieuse
Auteur, co-auteur :
Khachatryan, Lusine
Xiang, Yang
Ivanov, Artem
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Graham, Garrett
Granata, Ilaria
Giordano, Maurizio
Maddalena, Lucia
Piccirillo, Marina
Manipur, Ichcha
Baruzzo, Giacomo
Cappellato, Marco
Avot, Batiste
Stan, Adrian
Battey, James
Lo Sasso, Giuseppe
Boue, Stephanie
Ivanov, Nikolai V.
Peitsch, Manuel C.
Hoeng, Julia
Falquet, Laurent
Di Camillo, Barbara
Guarracino, Mario
Ulyantsev, Vladimir
Sierro, Nicolas
Poussin, Carine
Plus d'auteurs (16 en +) Voir moins
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Results and Lessons Learned from the sbv IMPROVER Metagenomics Diagnostics for Inflammatory Bowel Disease Challenge
Date de publication/diffusion :
2023
Titre du périodique :
Scientific Reports
Maison d'édition :
Nature Publishing Group
Volume/Tome :
in press
Peer reviewed :
Peer reviewed
Focus Area :
Systems Biomedicine
Disponible sur ORBilu :
depuis le 06 avril 2023

Statistiques


Nombre de vues
205 (dont 0 Unilu)
Nombre de téléchargements
83 (dont 0 Unilu)

citations Scopus®
 
5
citations Scopus®
sans auto-citations
5
citations OpenAlex
 
12
citations WoS
 
5

Bibliographie


Publications similaires



Contacter ORBilu