[en] Keeping strategic allocations at target level to maintain high exposure to private equity is a complex but essential task for investors who need to balance against the risk of default. Illiquidity and cashflow uncertainty are critical challenges especially when commitments are irrevocable. In this work, we propose to use a trustworthy and explainable A.I. approach to design recommitment strategies. Using intensive portfolios simulations and evolutionary computing, we show that efficient and dynamic recommitment strategies can be brought forth automatically.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KIEFFER, Emmanuel ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Meyer, Thomas; Simcorp Luxembourg SA
Gloukoviezoff, Georges; European Investment Bank
Lucius, Hakan; European Investment Bank
BOUVRY, Pascal ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Learning private equity recommitment strategies for institutional investors
Arnold T. R. Ling D. C. Naranjo A. (2017). Waiting to be called: The impact of manager discretion and dry powder on private equity real estate returns. J. Portf. Manag. 43, 23–43. 10.3905/jpm.2017.43.6.023
Branke J. Nguyen S. Pickardt C. W. Zhang M. (2016). Automated Design of Production Scheduling Heuristics: A Review. IEEE Trans. Evolut. Comput. 20, 110–124. 10.1109/TEVC.2015.2429314
Burke E. K. Gendreau M. Hyde M. Kendall G. Ochoa G. Özcan E. et al. (2013). Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64, 1695–1724. 10.1057/jors.2013.71
Burke E. K. Hyde M. R. Kendall G. (2012). Grammatical evolution of local search heuristics. IEEE Trans. Evolut. Comput. 16, 406–417. 10.1109/TEVC.2011.2160401
Cumming D. J. Kumar S. Lim W. M. Pandey N. (2022). Venture capital and private equity research: A bibliometric review and future research agenda. SSRN 4034812. 10.2139/ssrn.4034812
de Malherbe E. (2004). Modeling private equity funds and private equity collaterised fund obligations. Int. J. Theor. Appl. Finance 7, 193–230. 10.1142/S0219024904002359
de Zwart G. Frieser B. van Dijk D. (2012). Private equity recommitment strategies for institutional investors. Finan. Anal. J. 68, 81–99. 10.2469/faj.v68.n3.1
Deb K. Agrawal S. Pratap A. Meyarivan T. (2000). “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” in Parallel Problem Solving from Nature PPSN VI, 849–858. 10.1007/3-540-45356-3_83
Devlin J. Chang M.-W. Lee K. Toutanova K. (2019). “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North, 4171–4186. 10.18653/v1/N19-1423
Drake J. H. Kheiri A. Özcan E. Burke E.K. (2020). Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 285, 405–428. 10.1016/j.ejor.2019.07.073
Freitas A. A. (2003). “A survey of evolutionary algorithms for data mining and knowledge discovery,” in Advances in Evolutionary Computing. Natural Computing Series, eds. A., Ghosh, S., Tsutsui (Berlin, Heidelberg: Springer). 10.1007/978-3-642-18965-4_33
Fukunaga A. S. (2004). Evolving local search heuristics for SAT using genetic programming. Genetic Evolut. Comput. 3103, 483–494. 10.1007/978-3-540-24855-2_59
Furenstam E. Forsell J. (2018). Cashflow Simulation in Private Equity – An evaluation and comparison of two models. Umeå University, Spring. Available online at: https://umu.diva-portal.org/smash/get/diva2:1216322/FULLTEXT01.pdf (accessed November 15, 2021).
Heath C. J. Cattanach K. A. Kelly M. F. (2000). How large should your commitment to private equity really be? J. Wealth Manage. 3, 39–45. 10.3905/jwm.2000.320386
Hoek H. (2007). An ALM analysis of private equity. Available online at: http://files.ortec-finance.com/Publications/research/OCFR_App_WP_2007_01.pdf (accessed August 25, 2022).
Kampouridis M. Alsheddy A. Tsang E. (2013). On the investigation of hyper-heuristics on a financial forecasting problem. Ann. Math. Artif. Intell. 68, 225–246. 10.1007/s10472-012-9283-0
Katoch S. Chauhan S. S. Kumar V. (2020). A review on genetic algorithm: Past, present, and future. Multim. Tools Applic. 80, 8091–8126. 10.1007/s11042-020-10139-633162782
Kieffer E. Pinel F. Meyer T. Gloukoviezoff G. Lucius H. Bouvry P. (2021). “Evolutionary learning of private equity recommitment strategies,” in 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8. 10.1109/SSCI50451.2021.966008827295638
Kocis J. M. Bachman J. C. Long A. M. Nickels C. J. (2009). Inside Private Equity – The Professional Investor's Handbook. Hoboken: John Wiley and Sons. 10.1002/9781118266960
Krizhevsky A. Sutskever I. Hinton G. E. (2017). ImageNet classification with deep convolutional neural networks. Communic. ACM. 60, 84–90. 10.1145/3065386
Nevins D. Conner A. McIntire G. (2004). A portfolio management approach to determining private equity commitments. J. Alter. Invest. 6, 32–46. 10.3905/jai.2004.391062
Oberli A. (2015). Private equity asset allocation: How to recommit? J. Private Equity 18, 9–22. 10.3905/jpe.2015.18.2.009
Oltean M. (2005). Evolving evolutionary algorithms using linear genetic programming. Evol. Comput. 13, 387–410. 10.1162/106365605479481516156929
Sabar N. R. (2015). Automatic design of a hyper-heuristic framework with gene expression programming for combinatorial optimization problems. IEEE Trans. Evolut. Comput. 19, 309–325. 10.1109/TEVC.2014.2319051
Sabar N. R. Ayob M. Kendall G. Qu R. (2013). Grammatical evolution hyper-heuristic for combinatorial optimization problems. IEEE Trans. Evolut. Comput. 17, 840–861. 10.1109/TEVC.2013.2281527
Takahashi D. Alexander S. (2002). Illiquid alternative asset fund modeling. J. Portfolio Manage. 28, 90–100. 10.3905/jpm.2002.319836
Tolkamp C. (2007). Predicting private equity performance – the development of a private equity performance-forecasting model for AEGON asset management'. Master's Thesis in Industrial Engineering and Management. University of Twente. The Netherlands.
van Lon R. R. S. Holvoet T. Vanden Berghe G. Wenseleers T. Branke J. (2012). “Evolutionary synthesis of multi-agent systems for dynamic dial-a-ride problems,” in Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation. 10.1145/2330784.2330832
Whitley D. Sutton A. M. (2012). “Genetic algorithms – A survey of models and methods,” in Handbook of Natural Computing. (Berlin; Heidelberg: Springer) 637–671. 10.1007/978-3-540-92910-9_21
Žegklitz J. Pošík P. (2020). Benchmarking state-of-the-art symbolic regression algorithms. Genetic Program. Evolv. Mach. 22, 5–33. 10.1007/s10710-020-09387-0
Zhang J. Xing L. (2017). “A survey of multiobjective evolutionary algorithms,” in IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), 93–100. 10.1109/CSE-EUC.2017.27