Article (Périodiques scientifiques)
Black-Box Testing of Deep Neural Networks through Test Case Diversity
Aghababaeyan, Zohreh; Abdellatif, Manel; BRIAND, Lionel et al.
2023In IEEE Transactions on Software Engineering
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
TSE_BlackBox_diversity_R2__Final_version_.pdf
Preprint Auteur (6.29 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Deep Neural Network; Testing
Résumé :
[en] Deep Neural Networks (DNNs) have been extensively used in many areas including image processing, medical diagnostics and autonomous driving. However, DNNs can exhibit erroneous behaviours that may lead to critical errors, especially when used in safety-critical systems. Inspired by testing techniques for traditional software systems, researchers have proposed neuron coverage criteria, as an analogy to source code coverage, to guide the testing of DNNs. Despite very active research on DNN coverage, several recent studies have questioned the usefulness of such criteria in guiding DNN testing. Further, from a practical standpoint, these criteria are white-box as they require access to the internals or training data of DNNs, which is often not feasible or convenient. Measuring such coverage requires executing DNNs with candidate inputs to guide testing, which is not an option in many practical contexts. In this paper, we investigate diversity metrics as an alternative to white-box coverage criteria. For the previously mentioned reasons, we require such metrics to be black-box and not rely on the execution and outputs of DNNs under test. To this end, we first select and adapt three diversity metrics and study, in a controlled manner, their capacity to measure actual diversity in input sets. We then analyze their statistical association with fault detection using four datasets and five DNNs. We further compare diversity with state-of-the-art white-box coverage criteria. As a mechanism to enable such analysis, we also propose a novel way to estimate fault detection in DNNs. Our experiments show that relying on the diversity of image features embedded in test input sets is a more reliable indicator than coverage criteria to effectively guide DNN testing. Indeed, we found that one of our selected black-box diversity metrics far outperforms existing coverage criteria in terms of fault-revealing capability and computational time. Results also confirm the suspicions that state-of-the-art coverage criteria are not adequate to guide the construction of test input sets to detect as many faults as possible using natural inputs.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Aghababaeyan, Zohreh;  University of Ottawa
Abdellatif, Manel;  Ecole de Technologie Supérieure
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
S, Ramesh;  General Motor
Bagherzadeh, Mojtaba;  University of Ottawa
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Black-Box Testing of Deep Neural Networks through Test Case Diversity
Date de publication/diffusion :
2023
Titre du périodique :
IEEE Transactions on Software Engineering
ISSN :
0098-5589
eISSN :
1939-3520
Maison d'édition :
Institute of Electrical and Electronics Engineers, New-York, Etats-Unis - New York
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Organisme subsidiant :
General Motors
Disponible sur ORBilu :
depuis le 03 mars 2023

Statistiques


Nombre de vues
216 (dont 8 Unilu)
Nombre de téléchargements
100 (dont 8 Unilu)

citations Scopus®
 
53
citations Scopus®
sans auto-citations
47
OpenCitations
 
2
citations OpenAlex
 
65

Bibliographie


Publications similaires



Contacter ORBilu