Article (Périodiques scientifiques)
DRL-Assisted Delay Optimized Task Offloading in Automotive-Industry 5.0 based VECNs
Mirza, M. Ayzed; Junsheng, Yu; Raza, Salman et al.
2023In Journal of King Saud University - Computer and Information Sciences
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S1319157823000423-main.pdf
Postprint Éditeur (4.96 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Automotove Industry 5.0; Wehicular Edge Computing; Task Offloading
Résumé :
[en] The rapid growth of Automotive-Industry 5.0 and its emergence with beyond fifth-generation (B5G) communications, is making vehicular edge computing networks (VECNs) increasingly complex. The latency constraints of modern automotive applications make it difficult to run complex applications on vehicle on-board units (OBUs). While multi-access edge computing (MEC) can facilitate task offloading to execute these applications, it is still a challenge to access them promptly and optimally. Traditional algorithms struggle to guarantee accuracy in such dynamic environment, but deep reinforcement learning (DRL) methods offer improved accuracy, robustness, and real-time decision-making capabilities. In this paper, we propose a DRL-based mobility, contact, and load aware cooperative task offloading (DCTO) scheme. DCTO is designed for both cellular and mmWave radio access technologies (RATs), and both binary and partial offloading mechanisms. DCTO targets delay minimization by opportunistically switching RATs and offloading mechanisms. We consider relative efficacy and neutrality factors as key performance indicators and use them to derive the DRL agent’s reward function. Extensive evaluations demonstrate that the DCTO scheme exhibits a substantial enhancement in task success rate, with an increase from 2.61% to 21.34%. It also improves the efficacy factor from 1.38 to 3.52 and reduces the neutrality factor from 4.99 to 0.76. Furthermore, the average task processing time is reduced by a range of 3.77% to 24.15%. Additionally, the DCTO scheme outperforms the other evaluated schemes in terms of reward and TFPS ratio.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Mirza, M. Ayzed
Junsheng, Yu
Raza, Salman
Krichen, Moez
Ahmed, Manzoor
KHAN, Wali Ullah  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Rabie, Khaled
Shongwe, Thokozani
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
DRL-Assisted Delay Optimized Task Offloading in Automotive-Industry 5.0 based VECNs
Titre traduit :
[en] DRL-Assisted Delay Optimized Task Offloading in Automotive-Industry 5.0 based VECNs
Date de publication/diffusion :
04 février 2023
Titre du périodique :
Journal of King Saud University - Computer and Information Sciences
ISSN :
1319-1578
eISSN :
2213-1248
Maison d'édition :
Elsevier
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 03 mars 2023

Statistiques


Nombre de vues
134 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
26
citations Scopus®
sans auto-citations
18
citations OpenAlex
 
27

Bibliographie


Publications similaires



Contacter ORBilu