Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
The Elements of Visual Art Recommendation: Learning Latent Semantic Representations of Paintings
YILMA, Bereket Abera; LEIVA, Luis A.
2023In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23)
Peer reviewed
 

Documents


Texte intégral
chi23-783_access.pdf
Preprint Auteur (7.71 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Recommendation systems; Personalization; Machine Learning
Résumé :
[en] Artwork recommendation is challenging because it requires understanding how users interact with highly subjective content, the complexity of the concepts embedded within the artwork, and the emotional and cognitive reflections they may trigger in users. In this paper, we focus on efficiently capturing the elements (i.e., latent semantic relationships) of visual art for personalized recommendation. We propose and study recommender systems based on textual and visual feature learning techniques, as well as their combinations. We then perform a small-scale and a large-scale user-centric evaluation of the quality of the recommendations. Our results indicate that textual features compare favourably with visual ones, whereas a fusion of both captures the most suitable hidden semantic relationships for artwork recommendation. Ultimately, this paper contributes to our understanding of how to deliver content that suitably matches the user's interests and how they are perceived.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
YILMA, Bereket Abera  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
LEIVA, Luis A.  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
The Elements of Visual Art Recommendation: Learning Latent Semantic Representations of Paintings
Date de publication/diffusion :
avril 2023
Nom de la manifestation :
Conference on Human Factors in Computing Systems (CHI ’23)
Date de la manifestation :
22-04-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23)
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet européen :
HE - 101071147 - SYMBIOTIK - Context-aware adaptive visualizations for critical decision making
Projet FnR :
FNR15722813 - Brainsourcing For Affective Attention Estimation, 2021 (01/02/2022-31/01/2025) - Luis Leiva
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 01 mars 2023

Statistiques


Nombre de vues
449 (dont 60 Unilu)
Nombre de téléchargements
241 (dont 19 Unilu)

citations Scopus®
 
19
citations Scopus®
sans auto-citations
13
citations OpenAlex
 
17

Bibliographie


Publications similaires



Contacter ORBilu