[en] By inducing phase separation in lipid monolayers on liquid crystal (LC) shells—thin hollow spheres of LC with water inside and outside—we reveal a rich set of coupled two- and three-dimensional (2D and 3D) self- organization phenomena enabled by the dual closely spaced internal and external spherical LC-water interfaces. Spindle-shaped 2D islands of condensed lipid monolayer first form at the primary interface where lipids are deposited, later also at the initially unexposed secondary interface, because lipids transfer through the LC. The LCs’ elastic response to the 3D deformation caused by islands moves them from thin to thick regions on the shell and creates an attraction between opposite-side islands, topologically separated by the LCs, until they stack in a sandwich-like manner. We propose that the phase separation may be used for studying liposome adsorption on soft hydrophobic substrates, and to create unconventional colloidal particles with programmed interactions.
Disciplines :
Physique
Auteur, co-auteur :
SHARMA, Anjali ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Gupta, Deepak; Dipartimento di Fisica ‘G. Galilei’, INFN, Universitá di Padova, Via Marzolo 8, 35131 Padova, Italy
SCALIA, Giusy ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
LAGERWALL, Jan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Lipid islands on liquid crystal shells
Date de publication/diffusion :
18 février 2022
Titre du périodique :
Physical Review Research
eISSN :
2643-1564
Maison d'édition :
American Physical Society (APS), College Park, Etats-Unis - Maryland
Volume/Tome :
4
Pagination :
013130
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Projet européen :
H2020 - 648763 - INTERACT - Intelligent Non-woven Textiles and Elastomeric Responsive materials by Advancing liquid Crystal Technology
Projet FnR :
FNR10935404 - Materials For Sensing And Energy Harvesting, 2015 (01/10/2016-31/03/2023) - Emmanuel Defay
Organisme subsidiant :
CE - Commission Européenne FNR - Fonds National de la Recherche European Union
T. Lopez-Leon and A. Fernandez-Nieves, Drops and shells of liquid crystal, Colloid Polym. Sci. 289, 345 (2011) CPMSB6 0303-402X 10.1007/s00396-010-2367-7.
M. Urbanski, C. G. Reyes, J. Noh, A. Sharma, Y. Geng, V. S. R. Jampani, and J. P. Lagerwall, Liquid crystals in micron-scale droplets, shells and fibers, J. Phys.: Condens. Matter 29, 133003 (2017) JCOMEL 0953-8984 10.1088/1361-648X/aa5706.
O. Lavrentovich, Topological defects in dispersed liquid crystals, or words and worlds around liquid crystal drops, Liq. Cryst. 24, 117125 (1998) LICRE6 0267-8292 10.1080/026782998207640.
A. Fernandez-Nieves, V. Vitelli, A. Utada, D. R. Link, M. Marquez, D. R. Nelson, and D. A. Weitz, Novel Defect Structures in Nematic Liquid Crystal Shells, Phys. Rev. Lett. 99, 157801 (2007) PRLTAO 0031-9007 10.1103/PhysRevLett.99.157801.
T. Lopez-Leon, V. Koning, K. B. Devaiah, V. Vitelli, and A. Fernandez-Nieves, Frustrated nematic order in spherical geometries, Nat. Phys. 7, 391 (2011) 1745-2473 10.1038/nphys1920.
J. M. Brake, Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals, Science 302, 2094 (2003) SCIEAS 0036-8075 10.1126/science.1091749.
J. Gupta, M. Meli, S. Teren, and N. Abbott, Elastic Energy-Driven Phase Separation of Phospholipid Monolayers at the Nematic Liquid-Crystal-Aqueous Interface, Phys. Rev. Lett. 100, 048301 (2008) PRLTAO 0031-9007 10.1103/PhysRevLett.100.048301.
A. D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (Blackwell Scientific Publications, Oxford, 1997), https://goldbook.iupac.org/terms/view/P04534.
P. Popov, L. W. Honaker, E. E. Kooijman, E. K. Mann, and A. I. Jákli, A liquid crystal biosensor for specific detection of antigens, Sens. Bio-Sens. Res. 8, 31 (2016) 2214-1804 10.1016/j.sbsr.2016.03.008.
G. Volovik and O. Lavrentovich, Topological dynamics of defects: Boojums in nematic drops, Sov. Phys. JETP 58, 1159 (1983).
M. C. Carter, D. S. Miller, J. Jennings, X. Wang, M. K. Mahanthappa, N. L. Abbott, and D. M. Lynn, Synthetic mimics of bacterial lipid A trigger optical transitions in liquid crystal microdroplets at ultralow picogram-per-milliliter concentrations, Langmuir 31, 12850 (2015) LANGD5 0743-7463 10.1021/acs.langmuir.5b03557.
P. Bao, D. A. Paterson, P. L. Harrison, K. Miller, S. Peyman, J. C. Jones, J. Sandoe, S. D. Evans, R. J. Bushby, and H. F. Gleeson, Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides, Lab Chip 19, 1082 (2019) 1473-0197 10.1039/C8LC01291A.
M. Zhang and C. H. Jang, Sensitive detection of trypsin using liquid-crystal droplet patterns modulated by interactions between poly-L-lysine and a phospholipid monolayer, ChemPhysChem 15, 2569 (2014) CPCHFT 1439-4235 10.1002/cphc.201402120.
A. Sharma, A. M. Stoffel, and J. P. F. Lagerwall, Liquid crystal elastomer shells with topological defect-defined actuation: Complex shape morphing, opening/closing, and unidirectional rotation, J. Appl. Phys. 129, 174701 (2021) JAPIAU 0021-8979 10.1063/5.0044920.
V. S. R. Jampani, R. H. Volpe, K. Reguengo de Sousa, J. Ferreira Machado, C. M. Yakacki, and J. P. F. Lagerwall, Liquid crystal elastomer shell actuators with negative order parameter, Sci. Adv. 5, eaaw2476 (2019) 2375-2548 10.1126/sciadv.aaw2476.
V. S. R. Jampani, D. J. Mulder, K. R. De Sousa, A.-H. Glbart, J. P. F. Lagerwall, and A. P. H. J. Schenning, Micrometer-scale porous buckling shell actuators based on liquid crystal networks, Adv. Funct. Mater. 28, 1801209 (2018) 1616-301X 10.1002/adfm.201801209.
H. Fuster, X. Wang, X. Wang, E. Bukusoglu, S. Spagnolie, and N. Abbott, Programming van der Waals interactions with complex symmetries into microparticles using liquid crystallinity, Sci. Adv. 6, eabb1327 (2020) 2375-2548 10.1126/sciadv.abb1327.
S. Martin and R. G. Parton, Lipid droplets: A unified view of a dynamic organelle, Nat. Rev. Mol. Cell Biol. 7, 373 (2006) NRMCBP 1471-0072 10.1038/nrm1912.
C. Kataoka-Hamai and K. Kawakami, Interaction mechanisms of giant unilamellar vesicles with hydrophobic glass surfaces and silicone oil-water interfaces: Adsorption, deformation, rupture, dynamic shape changes, internal vesicle formation, and desorption, Langmuir 35, 16136 (2019) LANGD5 0743-7463 10.1021/acs.langmuir.9b02472.
M. Tsuei, M. Shivrayan, Y. Kim, S. Thayumanavan, and N. Abbott, Optical blinking triggered by collisions of single supramolecular assemblies of amphiphilic molecules with interfaces of liquid crystals, J. Am. Chem. Soc. 142, 61396148 (2020) JACSAT 0002-7863 10.1021/jacs.9b13360.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevResearch.4.013130 for videos showing the full dynamic response of LC shells to lipid exposure under varying conditions, corresponding to the discussion in the paper where the movies are referenced; further description is provided in the Read Me file.
T. Baumgart, S. Hess, and W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature (London) 425, 821 (2003) NATUAS 0028-0836 10.1038/nature02013.
S. T. Lagerwall, On some important chapters in the history of liquid crystals, Liq. Cryst. 40, 1698 (2013) LICRE6 0267-8292 10.1080/02678292.2013.831134.
T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, Crystals That Flow: Classic Papers from the History of Liquid Crystals (Taylor and Francis, London, 2004).
L. Tran, M. O. Lavrentovich, G. Durey, A. Darmon, M. F. Haase, N. Li, D. Lee, K. J. Stebe, R. D. Kamien, and T. Lopez-Leon, Change in Stripes for Cholesteric Shells via Anchoring in Moderation, Phys. Rev. X 7, 041029 (2017) 2160-3308 10.1103/PhysRevX.7.041029.
M. Schadt and F. Muller, Physical properties of new liquid-crystal mixtures and electrooptical performance in twisted nematic displays, IEEE Trans. Electron Devices 25, 1125 (1978) IETDAI 0018-9383 10.1109/T-ED.1978.19236.
G.-P. Chen, H. Takezoe, and A. Fukuda, Determination of (Equation presented) ((Equation presented)-3) and (Equation presented) ((Equation presented)-6) in 5CB by observing the angular dependence of Rayleigh line spectral widths, Liq. Cryst. 5, 341 (1989) LICRE6 0267-8292 10.1080/02678298908026375.
J. Noh, Y. Wang, H.-L. Liang, V. S. R. Jampani, A. Majumdar, and J. P. F. Lagerwall, Dynamic tuning of the director field in liquid crystal shells using block copolymers, Phys. Rev. Research 2, 033160 (2020) 2643-1564 10.1103/PhysRevResearch.2.033160.
A. Sonin, Inorganic lyotropic liquid crystals, J. Mater. Chem. 8, 2557 (1998) JMACEP 0959-9428 10.1039/a802666a.
P. Prinsen and P. van der Schoot, Shape and director-field transformation of tactoids, Phys. Rev. E 68, 021701 (2003) 1063-651X 10.1103/PhysRevE.68.021701.
Y. Kim, S. Shiyanovskii, and O. Lavrentovich, Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals, J. Phys.: Condens. Matter 25, 404202 (2013) JCOMEL 0953-8984 10.1088/0953-8984/25/40/404202.
A. Mangiarotti, B. Caruso, and N. Wilke, Phase coexistence in films composed of DLPC and DPPC: A comparison between different model membrane systems, Biochim. Biophys. Acta 1838, 1823 (2014) 0005-2736 10.1016/j.bbamem.2014.02.012.
A. Sharma and J. P. Lagerwall, Influence of head group and chain length of surfactants used for stabilising liquid crystal shells, Liq. Cryst. 45, 2319 (2018) LICRE6 0267-8292 10.1080/02678292.2018.1509391.
A. Sharma, V. S. R. Jampani, and J. P. F. Lagerwall, Realignment of liquid crystal shells driven by temperature-dependent surfactant solubility, Langmuir 35, 11132 (2019) LANGD5 0743-7463 10.1021/acs.langmuir.9b00989.
J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Academic Press, Burlington, MA, 2010).
J. Cumberland, T. Lopatkina, M. Murachver, P. Popov, V. Kenderesi, Á. Buka, E. Mann, and A. Jákli, Bending nematic liquid crystal membranes with phospholipids, Soft Matter 14, 7003 (2018) 1744-683X 10.1039/C8SM01193A.
R. Meister, H. Dumoulin, M.-A. Hallé, and P. Pieranski, The anchoring of a cholesteric liquid crystal at the free surface, J. Phys. II (France) 6, 827 (1996).
I. B. Liu, M. A. Gharbi, V. L. Ngo, R. D. Kamien, S. Yang, and K. J. Stebe, Elastocapillary interactions on nematic films, Proc. Natl. Acad. Sci. U. S. A. 112, 6336 (2015) PNASA6 0027-8424 10.1073/pnas.1504817112.
M. O. Lavrentovich and L. Tran, Undulation instabilities in cholesteric liquid crystals induced by anchoring transitions, Phys. Rev. Research 2, 023128 (2020) 2643-1564 10.1103/PhysRevResearch.2.023128.
P. Poulin, H. Stark, T. C. Lubensky, and D. A. Weitz, Novel colloidal interactions in anisotropic fluids, Science 275, 1770 (1997) SCIEAS 0036-8075 10.1126/science.275.5307.1770.
I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, and S. Zumer, Two-dimensional nematic colloidal crystals self-assembled by topological defects, Science 313, 954 (2006) SCIEAS 0036-8075 10.1126/science.1129660.
D. Myung and S. Park, Optical properties and applications of photonic shells, ACS Appl. Mater. Interfaces 11, 2035020359 (2019) 1944-8244 10.1021/acsami.9b04105.
K. He, F. Campo-Cortés, M. Goral, T. López-León, and J. M. Gordillo, Micron-sized double emulsions and nematic shells generated via tip streaming, Phys. Rev. Fluids 4, 124201 (2019) 2469-990X 10.1103/PhysRevFluids.4.124201.
J. K. Gupta and N. L. Abbott, Principles for manipulation of the lateral organization of aqueous-soluble surface-active molecules at the liquid crystal-aqueous interface, Langmuir 25, 2026 (2009) LANGD5 0743-7463 10.1021/la803475c.
M. P. Murrell, R. Voituriez, J.-F. Joanny, P. Nassoy, C. Sykes, and M. L. Gardel, Liposome adhesion generates traction stress, Nat. Phys. 10, 163 (2014) 1745-2473 10.1038/nphys2855.
A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, Monodisperse double emulsions generated from a microcapillary device, Science 308, 537 (2005) SCIEAS 0036-8075 10.1126/science.1109164.
P. Bao, M. R. Cheetham, J. S. Roth, A. C. Blakeston, R. J. Bushby, and S. D. Evans, On-chip alternating current electrophoresis in supported lipid bilayer membranes, Anal. Chem. 84, 10702 (2012) ANCHAM 0003-2700 10.1021/ac302446w.
https://doi.org/10.5281/zenodo.5893857.
H. L. Liang, S. Schymura, P. Rudquist, and J. Lagerwall, Nematic-Smectic Transition under Confinement in Liquid Crystalline Colloidal Shells, Phys. Rev. Lett. 106, 247801 (2011) PRLTAO 0031-9007 10.1103/PhysRevLett.106.247801.
T. Lopez-Leon, A. Fernandez-Nieves, M. Nobili, and C. Blanc, Nematic-Smectic Transition in Spherical Shells, Phys. Rev. Lett. 106, 247802 (2011) PRLTAO 0031-9007 10.1103/PhysRevLett.106.247802.
M. Rubinstein and R. H. Colby, Polymer Physics (Chemistry) (Oxford University Press, Oxford, 2003), p. 454.
H. L. Liang, R. Zentel, P. Rudquist, and J. Lagerwall, Towards tunable defect arrangements in smectic liquid crystal shells utilizing the nematic-smectic transition in hybrid-aligned geometries, Soft Matter 8, 5443 (2012) 1744-683X 10.1039/c2sm07415j.