Aizenstein, H. J., Baskys, A., Boldrini, M., Butters, M. A., Diniz, B. S., Jaiswal, M. K., … Mijajlovic, M. D. (2016). Vascular depression consensus report: A critical update. BMC Medicine, 14, 1–16. https://doi.org/10.1186/s12916-016-0720-5
Alexopoulos, G. S. (2006). The vascular depression hypothesis: 10 years later. Biological Psychiatry, 60(12), 1304–1305. https://doi.org/10.1097/JGP. 0b013e318202fc8a
Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., … Zhang, Z. (2012). Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. The Journal of Neuroscience, 32(12), 4307–4318. https://doi.org/10.1523/JNEUROSCI.5061-11.2012
Barsky, A. J., & Silbersweig, D. A. (2017). Depression in medical illness (1st ed.). New York City, USA: McGraw Hill Professional.
Brodaty, H., & Connors, M. H. (2020). Pseudodementia, pseudopseudodementia, and pseudodepression. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 12, 1–8. https://doi.org/10.1002/dad2.12027
Buchanan, C. R., Bastin, M. E., Ritchie, S. J., Liewald, D. C., Madole, J. W., Tucker-Drob, … Cox, S. R. (2020). The effect of network thresholding and weighting on structural brain networks in the UK Biobank. NeuroImage, 211, 1–14. https://doi.org/10.1016/j.neuroimage.2019.116443.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575
Disabato, B. M., & Sheline, Y. I. (2012). Biological basis of late-life depression. Current Psychiatry Reports, 14(4), 273–279. https://doi.org/10.1007/s11920-012-0279-6
Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Structure and Function, 213, 93–118. https://doi.org/10.1007/s00429-008-0189-x
Geraets, A. F. J., Köhler, S., Jansen, J. F. A., Eussen, S. J. P. M., Stehouwer, C. D. A., Schaper, N. C., … Schram, M. T. (2021). The association of markers of cerebral small vessel disease and brain atrophy with incidence and course of depressive symptoms - The Maastricht study. Journal of Affective Disorders, 292, 439–447. https://doi.org/10.1016/j.jad.2021.05.096
Gong, Q., & He, Y. (2015). Depression, neuroimaging and connectomics: A selective overview. Biological Psychiatry, 77(3), 223–235. https://doi.org/10.1016/j.biopsych.2014.08.009
Gray, J. P., Müller, V. I., Eickhoff, S. B., & Fox, P. T. (2020). Multimodal abnormalities of brain structure and function in major depressive disorder: A meta-analysis of neuroimaging studies. The American Journal of Psychiatry, 177(5), 422–434. https://doi.org/10.1176/appi.ajp.2019.19050560
Harada, N. D., Chiu, V., King, A. C., & Stewart, A. L. (2001). An evaluation of three self-report physical activity instruments for older adults. Medicine & Science in Sports & Exercise, 33(6), 962–970. https://doi.org/10.1097/ 00005768-200106000-00016
Helm, K., Viol, K., Weiger, T. M., Tass, P. A., Grefkes, C., Del Monte, D., & Schiepek, G. (2018). Neuronal connectivity in major depressive disorder: A systematic review. Neuropsychiatric Disease and Treatment, 14, 2715–2737. https://doi.org/10.2147/NDT.S170989
Honningsvåg, L.-M., Linde, M., Håberg, A., Stovner, L. J., & Hagen, K. (2012). Does health differ between participants and non-participants in the MRI-HUNT study, a population-based neuroimaging study? The Nord-Trøndelag health studies 1984–2009. BMC Medical Imaging, 12 (23), 1–9. https://doi.org/10.1186/1471-2342-12-23
IBM Corp. Released (2017). IBM SPSS statistics for windows, version 25.0. Armonk, NY: IBM Corp.
Janssen, E. P., Köhler, S., Stehouwer, C. D., Schaper, N. C., Dagnelie, P. C., Sep, S. J., … Schram, M. T. (2016). The patient health questionnaire-9 as a screening tool for depression in individuals with type 2 diabetes Mellitus: The Maastricht study. Journal of the American Geriatrics Society, 64(11), 201–206. https://doi.org/10.1111/jgs.14388
Korgaonkar, M. S., Fornito, A., Williams, L. M., & Grieve, S. M. (2014). Abnormal structural networks characterize major depressive disorder: A connectome analysis. Biological psychiatry, 76(7), 567–574. https://doi.org/10.1016/j.biopsych.2014.02.018
Koshiyama, D., Fukunaga, M., Okada, N., Morita, K., Nemoto, K., Usui, K., … Hashimoto, R. (2020). White matter microstructural alterations across four major psychiatric disorders: Mega-analysis study in 2937 individuals. Molecular Psychiatry, 25(4), 883–895. https://doi.org/10.1038/s41380-019-0553-7
Krishnan, K., Hays, J. C., & Blazer, D. G. (1997). MRI-defined vascular depression. The American Journal of Psychiatry, 154(4), 497–501. https://doi.org/10.1176/ajp.154.4.497
Kroenke, K., Spitzer, R., & Williams, J. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701–198704. https://doi.org/10.1103/PhysRevLett.87.198701
Li, X., Steffens, D. C., Potter, G. G., Guo, H., Song, S., & Wang, L. (2017). Decreased between-hemisphere connectivity strength and network efficiency in geriatric depression. Human Brain Mapping, 38, 53–67. https://doi.org/10.1002/hbm.23343
Marazziti, D., Rutigliano, G., Baroni, S., Landi, P., & Dell’Osso, L. (2014). Metabolic syndrome and major depression. CNS Spectrums, 19(4), 293–304. https://doi.org/10.1017/S1092852913000667
Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., … Dosenbach, N. U. F. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603, 654–660. https://doi.org/10.1038/s41586-022-04492-9
MATLAB (2016). Release 2016a. Natick, Massachusetts: The MathWorks Inc.
Mintzer, J., Donovan, K. A., Kindy, A. Z., Lock, S. L., Chura, L. R., & Barracca, N. (2019). Lifestyle Choices and Brain Health. Frontiers in Medicine, 6, 1–11. https://doi.org/10.3389/fmed.2019.00204
Mora, F. (2013). Successful brain aging: Plasticity, environmental enrichment, and lifestyle. Dialogues in Clinical Neuroscience, 15, 45–52. https://doi.org/10.31887/DCNS.2013.15.1/fmora
Pettersson, A., Bostrom, K. B., Gustavsson, P., & Ekselius, L. (2015). Which instruments to support diagnosis of depression have sufficient accuracy? A systematic review. Nordic Journal of Psychiatry, 69(7), 497–508. https://doi.org/10.3109/08039488.2015.1008568
Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35, 192–216. https://doi.org/10.1038/npp.2009. 104
Qin, J., Wei, M., Liu, H., Yan, R., Luo, G., Yao, Z., & Lu, Q. (2014). Abnormal brain anatomical topological organization of the cognitive-emotional and the frontoparietal circuitry in major depressive disorder. Magnetic Resonance in Medicine, 72(5), 1397–1407. https://doi.org/10.1002/mrm. 25036
Rose, G. A. (1962). The diagnosis of ischaemic heart pain and intermittent claudication in field surveys. Bulletin of the World Health Organization, 27(6), 645–658. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2555832/pdf/bullwho00310-0003.pdf
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
Sampaio-Baptista, C., & Johansen-Berg, H. (2017). White matter plasticity in the adult brain. Neuron, 96(6), 1239–1251. https://doi.org/10.1016/j.neuron.2017.11.026
Schisterman, E. F., Cole, S. R., & Platt, R. W. (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology, 20(4), 488–495. https://doi.org/10.1097/EDE.0b013e3181a819a1
Schram, M. T., Sep, S. J., van der Kallen, C. J., Dagnelie, P. C., Koster, A., Schaper, N., … Stehouwer, C. D. (2014). The Maastricht study: An extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. European Journal of Epidemiology, 29(6), 439–451. https://doi.org/10.1007/s10654-014-9889-0
Sheehan, D. V., Lecrubier, L., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The mini-international neuropsychiatric interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59, 22–33. Retrieved from https://www.psychiatrist.com/jcp/neurologic/neurology/mini-international-neuropsychiatric-interview-mini/
Stam, C. (2010). Characterization of anatomical and functional connectivity in the brain: A complex networks perspective. International Journal of Psychophysiology, 77(3), 186–194. https://doi.org/10.1016/j.ijpsycho.2010.06.024
Tuladhar, A. M., van Uden, I. W. M., Rutten-Jacobs, L. C. A., Lawrence, A., van der Holst, H., van Norden, A., … de Leeuw, F.-E. (2016). Structural network efficiency predicts conversion to dementia. Neurology, 86(12), 1112–1119. https://doi.org/10.1212/WNL.0000000000002502
van Agtmaal, M. J., Houben, A. J., Pouwer, F., Stehouwer, C. D., & Schram, M. T. (2017). Association of microvascular dysfunction with late-life depression: A systematic review and meta-analysis. JAMA Psychiatry, 74(7), 729–739. https://doi.org/10.1001/jamapsychiatry.2017.0984
van Lee, L., Geelen, A., van Huysduynen, E. J. C. H., de Vries, J. H. M., van’t Veer, P., & Feskens, E. J. M. (2012). The Dutch healthy diet index (DHD-index): An instrument to measure adherence to the Dutch guidelines for a healthy diet. Nutrition Journal, 11, 1–9. https://doi.org/10.1186/1475-2891-11-49
Vergoossen, L. W., Schram, M. T., de Jong, J. J., Stehouwer, C. D., Schaper, N. C., Henry, R. M., … Jansen, J. F. (2020). White matter connectivity abnormalities in prediabetes and type 2 diabetes: The Maastricht study. Diabetes Care, 43(1), 201–208. https://doi.org/10.2337/dc19-0762
Wassenaar, T. M., Yaffe, K., van der Werf, Y. D., & Sexton, C. E. (2019). Associations between modifiable risk factors and white matter of the aging brain: Insights from diffusion tensor imaging studies. Neurobiology of Aging, 80, 56–70. https://doi.org/10.1016/j.neurobiolaging. 2019.04.006
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393, 440–442. https://doi.org/10.1038/30918
Yao, Z., Zou, Y., Zheng, W., Zhang, Z., Li, Y., Yu, Y., … Hu, B. (2019). Structural alterations of the brain preceded functional alterations in major depressive disorder patients: Evidence from multimodal connectivity. Journal of Affective Disorders, 253, 107–117. https://doi.org/10.1016/j.jad.2019.04.064
Zhang, H., Li, L., Wu, M., Chen, Z., Hu, X., Chen, Y., … Gong, Q. (2016). Brain gray matter alterations in first episodes of depression: A meta-analysis of whole-brain studies. Neuroscience & Biobehavioral Reviews, 60, 43–50. https://doi.org/10.1016/j.neubiorev.2015.10.011
Zhang, R., Kranz, G. S., Zou, W., Deng, Y., Huang, X., Lin, K., & Lee, T. M. C. (2020). Rumination network dysfunction in major depression: A brain connectome study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 98, 1–9. https://doi.org/10.1016/j.pnpbp.2019.109819