The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
MOHAMMED TAHA, Hiba; Aalizadeh, Reza; Alygizakis, Nikiforoset al.
2022 • In Environmental Sciences Europe, 34 (1), p. 104
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/
[en] Abstract Background The NORMAN Association ( https://www.norman-network.com/ ) initiated the NORMAN Suspect List Exchange (NORMAN-SLE https://www.norman-network.com/nds/SLE/ ) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community ( https://zenodo.org/communities/norman-sle ), with a total of \textgreater 40,000 unique views, \textgreater 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem ( https://pubchem.ncbi.nlm.nih.gov/ ) and the US EPA’s CompTox Chemicals Dashboard ( https://comptox.epa.gov/dashboard/ ), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser ( 101 ). Conclusions The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website ( https://www.norman-network.com/nds/SLE/ ).
Disciplines :
Sciences de l’environnement & écologie
Auteur, co-auteur :
MOHAMMED TAHA, Hiba ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
Aalizadeh, Reza
Alygizakis, Nikiforos
Antignac, Jean-Philippe
Arp, Hans Peter H.
Bade, Richard
Baker, Nancy
Belova, Lidia
Bijlsma, Lubertus
Bolton, Evan E.
Brack, Werner
Celma, Alberto
Chen, Wen-Ling
Cheng, Tiejun
CHIRSIR, Parviel ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
Čirka, Ľuboš
D’Agostino, Lisa A.
Djoumbou Feunang, Yannick
Dulio, Valeria
Fischer, Stellan
Gago-Ferrero, Pablo
Galani, Aikaterini
Geueke, Birgit
Głowacka, Natalia
Glüge, Juliane
Groh, Ksenia
Grosse, Sylvia
Haglund, Peter
Hakkinen, Pertti J.
Hale, Sarah E.
Hernandez, Felix
Janssen, Elisabeth M.-L.
Jonkers, Tim
Kiefer, Karin
Kirchner, Michal
Koschorreck, Jan
Krauss, Martin
Krier, Jessy
Lamoree, Marja H.
Letzel, Marion
Letzel, Thomas
Li, Qingliang
Little, James
Liu, Yanna
Lunderberg, David M.
Martin, Jonathan W.
McEachran, Andrew D.
McLean, John A.
Meier, Christiane
Meijer, Jeroen
Menger, Frank
Merino, Carla
Muncke, Jane
Muschket, Matthias
Neumann, Michael
Neveu, Vanessa
Ng, Kelsey
Oberacher, Herbert
O’Brien, Jake
Oswald, Peter
Oswaldova, Martina
Picache, Jaqueline A.
Postigo, Cristina
Ramirez, Noelia
Reemtsma, Thorsten
Renaud, Justin
Rostkowski, Pawel
Rüdel, Heinz
Salek, Reza M.
Samanipour, Saer
Scheringer, Martin
Schliebner, Ivo
Schulz, Wolfgang
Schulze, Tobias
Sengl, Manfred
Shoemaker, Benjamin A.
Sims, Kerry
Singer, Heinz
Singh, Randolph R.
Sumarah, Mark
Thiessen, Paul A.
Thomas, Kevin V.
Torres, Sonia
Trier, Xenia
van Wezel, Annemarie P.
Vermeulen, Roel C. H.
Vlaanderen, Jelle J.
von der Ohe, Peter C.
Wang, Zhanyun
Williams, Antony J.
Willighagen, Egon L.
Wishart, David S.
Zhang, Jian
Thomaidis, Nikolaos S.
Hollender, Juliane
Slobodnik, Jaroslav
SCHYMANSKI, Emma ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
Krauss M, Singer H, Hollender J (2010) LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem 397:943–951. 10.1007/s00216-010-3608-9 DOI: 10.1007/s00216-010-3608-9
Hollender J, Schymanski EL, Singer HP, Ferguson PL (2017) Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environ Sci Technol 51:11505–11512. 10.1021/acs.est.7b02184 DOI: 10.1021/acs.est.7b02184
Schymanski EL, Jeon J, Gulde R et al (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098. 10.1021/es5002105 DOI: 10.1021/es5002105
Schymanski EL, Singer HP, Slobodnik J et al (2015) Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem 407:6237–6255. 10.1007/s00216-015-8681-7 DOI: 10.1007/s00216-015-8681-7
Dulio V, van Bavel B, Brorström-Lundén E et al (2018) Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ Sci Eur 30:5. 10.1186/s12302-018-0135-3 DOI: 10.1186/s12302-018-0135-3
Rostkowski P, Haglund P, Aalizadeh R et al (2019) The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal Bioanal Chem 411:1957–1977. 10.1007/s00216-019-01615-6 DOI: 10.1007/s00216-019-01615-6
Schulze B, van Herwerden D, Allan I et al (2021) Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Sci Data 8:223. 10.1038/s41597-021-01002-w DOI: 10.1038/s41597-021-01002-w
NORMAN Association (2022) NORMAN Interlaboratory Studies Website. https://www.norman-network.com/?q=interlab-studies. Accessed 8 Jul 2022
Pourchet M, Debrauwer L, Klanova J et al (2020) Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: from promises to challenges and harmonisation issues. Environ Int 139:105545. 10.1016/j.envint.2020.105545 DOI: 10.1016/j.envint.2020.105545
Grashow R, Bessonneau V, Gerona RR et al (2020) Integrating exposure knowledge and serum suspect screening as a new approach to biomonitoring: an application in firefighters and office workers. Environ Sci Technol 54:4344–4355. 10.1021/acs.est.9b04579 DOI: 10.1021/acs.est.9b04579
Brack W, Bakker J, de Deckere E et al (2005) MODELKEY. Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity (5 pp). Env Sci Poll Res Int 12:252–256. 10.1065/espr2005.08.286 DOI: 10.1065/espr2005.08.286
Moschet C, Piazzoli A, Singer H, Hollender J (2013) Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry. Anal Chem 85:10312–10320. 10.1021/ac4021598 DOI: 10.1021/ac4021598
Singer HP, Wössner AE, McArdell CS, Fenner K (2016) Rapid screening for exposure to “non-target” pharmaceuticals from wastewater effluents by combining HRMS-based suspect screening and exposure modeling. Environ Sci Technol 50:6698–6707. 10.1021/acs.est.5b03332 DOI: 10.1021/acs.est.5b03332
Schymanski EL, Singer HP, Longrée P et al (2014) Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ Sci Technol 48:1811–1818. 10.1021/es4044374 DOI: 10.1021/es4044374
Sjerps RMA, Brunner AM, Fujita Y et al (2021) Clustering and prioritization to design a risk-based monitoring program in groundwater sources for drinking water. Environ Sci Eur 33:32. 10.1186/s12302-021-00470-6 DOI: 10.1186/s12302-021-00470-6
Brunner AM, Dingemans MML, Baken KA, van Wezel AP (2019) Prioritizing anthropogenic chemicals in drinking water and sources through combined use of mass spectrometry and ToxCast toxicity data. J Hazard Mater 364:332–338. 10.1016/j.jhazmat.2018.10.044 DOI: 10.1016/j.jhazmat.2018.10.044
Letzel T, Bayer A, Schulz W et al (2015) LC–MS screening techniques for wastewater analysis and analytical data handling strategies: sartans and their transformation products as an example. Chemosphere 137:198–206. 10.1016/j.chemosphere.2015.06.083 DOI: 10.1016/j.chemosphere.2015.06.083
Peter Suber (2015) Open Access Overview (definition, introduction). http://legacy.earlham.edu/~peters/fos/overview.htm. Accessed 3 Jul 2021
Kim S, Chen J, Cheng T et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395. 10.1093/nar/gkaa971 DOI: 10.1093/nar/gkaa971
Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124. 10.1021/ed100697w DOI: 10.1021/ed100697w
Williams AJ, Grulke CM, Edwards J et al (2017) The CompTox chemistry dashboard: a community data resource for environmental chemistry. J Cheminform 9:61. 10.1186/s13321-017-0247-6 DOI: 10.1186/s13321-017-0247-6
GO FAIR (2021) FAIR Principles. https://www.go-fair.org/fair-principles/. Accessed 23 Mar 2021
Wilkinson MD, Dumontier M, IjJ A et al (2016) Comment: the FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:1–9. 10.1038/sdata.2016.18 DOI: 10.1038/sdata.2016.18
Schymanski EL, Bolton EE (2022) FAIR-ifying the exposome journal: templates for chemical structures and transformations. Exposome 2:osab006. https://doi.org/10.1093/exposome/osab006
European Chemicals Agency (ECHA) (2022) European Chemicals Agency (ECHA). https://www.echa.europa.eu/. Accessed 10 Jul 2022
European Food Safety Authority (EFSA) (2022) European Food Safety Authority (EFSA). https://www.efsa.europa.eu/en. Accessed 10 Jul 2022
European Commission (Joint Research Centre) (2022) Information Platform for Chemical Monitoring (IPCHEM). https://ipchem.jrc.ec.europa.eu/. Accessed 10 Jul 2022
Anses, European Commission (2022) European Partnership for the Assessment of Risks from Chemicals (PARC) - Anses Website. In: Anses-Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail (French Agency for Food, Environmental and Occupational Health & Safety). https://www.anses.fr/en/content/european-partnership-assessment-risks-chemicals-parc. Accessed 29 May 2022
Dulio V, Koschorreck J, van Bavel B et al (2020) The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! Environ Sci Eur 32:100. 10.1186/s12302-020-00375-w DOI: 10.1186/s12302-020-00375-w
Masaryk University (2022) Environmental Exposure Assessment Research Infrastructure (EIRENE). https://www.eirene-ri.eu/. Accessed 10 Jul 2022
Slobodnik J, Hollender J, Schulze T et al (2019) Establish data infrastructure to compile and exchange environmental screening data on a European scale. Environ Sci Eur 31:65. 10.1186/s12302-019-0237-6 DOI: 10.1186/s12302-019-0237-6
NORMAN Association (2022) NORMAN Suspect List Exchange (NORMAN-SLE) Website. https://www.norman-network.com/nds/SLE/. Accessed 29 Apr 2022
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28:31–36. 10.1021/ci00057a005 DOI: 10.1021/ci00057a005
Heller S, McNaught A, Stein S et al (2013) InChI—the worldwide chemical structure identifier standard. J Cheminform 5:7. 10.1186/1758-2946-5-7 DOI: 10.1186/1758-2946-5-7
American Chemical Society (2022) CAS REGISTRY—the CAS substance collection. https://www.cas.org/cas-data/cas-registry. Accessed 2 Feb 2022
European Chemicals Agency (ECHA) (2022) EC inventory. https://www.echa.europa.eu/information-on-chemicals/ec-inventory. Accessed 20 Jun 2022
Schymanski EL, Bolton EE (2021) FAIR chemical structures in the Journal of Cheminformatics. J Cheminform 13:50. 10.1186/s13321-021-00520-4 DOI: 10.1186/s13321-021-00520-4
Stravs MA, Schymanski EL, Singer HP, Hollender J (2013) Automatic recalibration and processing of tandem mass spectra using formula annotation: recalibration and processing of MS/MS spectra. J Mass Spectrom 48:89–99. 10.1002/jms.3131 DOI: 10.1002/jms.3131
Schymanski E (2022) RChemMass. https://github.com/schymane/RChemMass. Accessed 27 Apr 2022
United States Environmental Protection Agency (2022) CompTox Batch Search. https://comptox.epa.gov/dashboard/dsstoxdb/batch_search. Accessed 23 Jul 2022
O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. 10.1186/1758-2946-3-33 DOI: 10.1186/1758-2946-3-33
Willighagen EL, Mayfield JW, Alvarsson J et al (2017) The Chemistry Development Kit (CDK) v20: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform 9:33. 10.1186/s13321-017-0220-4 DOI: 10.1186/s13321-017-0220-4
Ruttkies C, Schymanski EL, Wolf S et al (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 8:3. 10.1186/s13321-016-0115-9 DOI: 10.1186/s13321-016-0115-9
Liu Y, D’Agostino L, Schymanski E, Martin J (2019) S46|PFASNTREV19|List of PFAS reported in Non-Target HRMS Studies (Liu et al 2019). Zenodo. 10.5281/zenodo.2656744
Liu Y, D’Agostino LA, Qu G et al (2019) High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl Substances (PFASs) in environmental and human samples. TrAC Trends Anal Chem 121:115420. 10.1016/j.trac.2019.02.021 DOI: 10.1016/j.trac.2019.02.021
Little J (2017) S18 | TSCASURF|TSCA surfactants. Zenodo. 10.5281/zenodo.2628792
Gago-Ferrero P, Schymanski EL, Bletsou AA et al (2015) Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol 49:12333–12341. 10.1021/acs.est.5b03454 DOI: 10.1021/acs.est.5b03454
Schymanski EL, Williams AJ (2017) Open science for identifying “known unknown” chemicals. Environ Sci Technol 51:5357–5359. 10.1021/acs.est.7b01908 DOI: 10.1021/acs.est.7b01908
Lai A, Clark AM, Escher BI et al (2022) The next frontier of environmental unknowns: substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs). Environ Sci Technol 56:7448–7466. 10.1021/acs.est.2c00321 DOI: 10.1021/acs.est.2c00321
European Organization For Nuclear Research, OpenAIRE, CERN (2013) Zenodo. https://www.zenodo.org/. Accessed 23 Jul 2022
NORMAN Association (2022) NORMAN Suspect List Exchange: Zenodo Community. https://zenodo.org/communities/norman-sle/. Accessed 23 Jul 2022
Arp HPH, Hale SE, Schliebner I, Neumann M (2022) S36|UBAPMT|Prioritised PMT/vPvM substances in the REACH registration database. Zenodo. 10.5281/zenodo.2653212
Grulke CM, Williams AJ, Thillanadarajah I, Richard AM (2019) EPA’s DSSTox database: history of development of a curated chemistry resource supporting computational toxicology research. Computat Toxicol 12:100096. 10.1016/j.comtox.2019.100096 DOI: 10.1016/j.comtox.2019.100096
Schymanski EL, Williams AJ (2018) S24|HUMANNEUROTOX|List of Human Neurotoxins. Zenodo. 10.5281/zenodo.2648769
Baker NC, Schymanski EL, Williams AJ (2019) S37|LITMINEDNEURO|Neurotoxicants from literature mining PubMed. Zenodo. 10.5281/zenodo.3242298
Baker NC, Schymanski EL, Williams AJ (2019) S43|NEUROTOXINS|Neurotoxicants Collection from Public Resources. Zenodo. 10.5281/zenodo.2656729
Schymanski EL, Baker NC, Williams AJ et al (2019) Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. Environ Sci Processes Impacts 21:1426–1445. 10.1039/C9EM00068B DOI: 10.1039/C9EM00068B
Wang Z (2018) S25|OECDPFAS|List of PFAS from the OECD. Zenodo. 10.5281/zenodo.2648776
OECD (2018) Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs): Summary report on updating the OECD 2007 list of per- and polyfluorinated substances (PFASs). OECD Report ENV/JM/MONO(2018)7:24
US EPA, OECD (2020) CompTox Chemicals Dashboard|PFASOECD Chemicals. https://comptox.epa.gov/dashboard/chemical-lists/PFASOECD. Accessed 29 Dec 2021
Williams A (2019) S45|SYNTHCANNAB|Synthetic Cannabinoids from CompTox. Zenodo. 10.5281/zenodo.2656740
Epa US, Williams A, Schymanski E (2019) S58|PSCYHOCANNAB|NPS and Synthetic Cannabinoids from CompTox. Zenodo. 10.5281/zenodo.3247723
Lowe CN, Williams AJ (2021) Enabling high-throughput searches for multiple chemical data using the U.S.-EPA CompTox Chemicals Dashboard. J Chem Inf Model 61:565–570. 10.1021/acs.jcim.0c01273 DOI: 10.1021/acs.jcim.0c01273
Schymanski EL, Zhang J, Bolton EE (2022) NORMAN-SLE/PubChem Deposition Mapping File. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem/-/blob/master/deposition/NORMAN_SLE_mappings.txt. Accessed 30 Apr 2022
NCBI/NLM/NIH (2022) PubChem Documentation. https://pubchemdocs.ncbi.nlm.nih.gov/about. Accessed 1 May 2022
Fischer S (2017) S17|KEMIMARKET|KEMI Market List. Zenodo. 10.5281/zenodo.2628787
Association NORMAN, Aalizadeh R, Alygizakis N et al (2018) S0|SUSDAT|Merged NORMAN Suspect List: SusDat. Zenodo. 10.5281/zenodo.2664078
Schymanski EL, Li Q, Bolton EE (2022) NORMAN-SLE / PubChem Synonym File. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem/-/blob/master/deposition/SLE_Synonyms.csv. Accessed 30 Apr 2022
Schymanski E, Baesu A, Chirsir P (2022) S74|REFTPS|Transformation Products and Reactions from Literature. Zenodo. 10.5281/zenodo.4318838
Chirsir P, Schymanski E (2022) S96|ECIPFAS|Updatable List to add PFAS Structures to Public Resources from ECI (UniLu). Zenodo. 10.5281/zenodo.6389740
NORMAN Association, NCBI/NLM/NIH (2022) NORMAN-SLE Data Source in PubChem. https://pubchem.ncbi.nlm.nih.gov/source/23819. Accessed 23 Jul 2022
Zhang J, Schymanski EL, Thiessen PA, Bolton EE (2022) NORMAN Suspect List Exchange Tree on PubChem Classification Browser. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101. Accessed 30 Apr 2022
Kim S, Cheng T, He S et al (2022) PubChem protein, gene, pathway, and taxonomy data collections: bridging biology and chemistry through target-centric views of PubChem data. J Mol Biol 434:167514. 10.1016/j.jmb.2022.167514 DOI: 10.1016/j.jmb.2022.167514
Schymanski EL, Chirsir P, LCSB-ECI, et al (2022) PubChem Annotation Content. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/pubchem/-/tree/master/annotations. Accessed 1 May 2022
Schymanski EL (2022) NORMAN-SLE List Overview 2022–05–04 (CSV). In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/stats/NORMAN-SLE_List_Overview_20220504.csv. Accessed 30 May 2022
Schymanski EL (2022) NORMAN-SLE Website Overview 2022–05–30 (DOCX). In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/web/NORMAN-SLE_Website_Overview_20220530.docx. Accessed 30 May 2022
NORMAN Association (2022) NORMAN Substance Database (NORMAN SusDat) Website. https://www.norman-network.com/nds/susdat/. Accessed 29 Apr 2022
Meijer J, Lamoree M, Hamers T et al (2021) An annotation database for chemicals of emerging concern in exposome research. Environ Int 152:106511. 10.1016/j.envint.2021.106511 DOI: 10.1016/j.envint.2021.106511
Meijer J, Lamoree M, Hamers T et al (2020) S71|CECSCREEN|HBM4EU CECscreen: screening list for chemicals of emerging concern plus metadata and predicted phase 1 metabolites. Zenodo. 10.5281/zenodo.3956586
Alygizakis N, Slobodnik J (2018) S32|REACH2017|>68,600 REACH Chemicals. Zenodo. 10.5281/zenodo.2653021
Groh KJ, Geueke B, Martin O et al (2021) Overview of intentionally used food contact chemicals and their hazards. Environ Int 150:106225. 10.1016/j.envint.2020.106225 DOI: 10.1016/j.envint.2020.106225
Brack W, Altenburger R, Schüürmann G et al (2015) The SOLUTIONS project: challenges and responses for present and future emerging pollutants in land and water resources management. Sci Total Environ 503–504:22–31. 10.1016/j.scitotenv.2014.05.143 DOI: 10.1016/j.scitotenv.2014.05.143
Sjerps R (2018) S27|KWRSJERPS2|Extended Suspect List from Sjerps et al (KWRSJERPS). Zenodo. 10.5281/zenodo.2648818
Sjerps RMA, Vughs D, van Leerdam JA et al (2016) Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Res 93:254–264. 10.1016/j.watres.2016.02.034 DOI: 10.1016/j.watres.2016.02.034
Ng K, Alygizakis N, Androulakakis A et al (2022) Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River Basin. J Hazard Mater 436:129276. 10.1016/j.jhazmat.2022.129276 DOI: 10.1016/j.jhazmat.2022.129276
Ng K, Alygizakis N, Slobodnik J (2021) S89|PRORISKPFAS|List of PFAS Compiled from NORMAN SusDat. Zenodo. 10.5281/zenodo.5769582
Groh KJ, Backhaus T, Carney-Almroth B et al (2018) Database of chemicals associated with plastic packaging (Cppdb), Updated Oct 9, 2018. Zenodo. 10.5281/zenodo.1287773
Groh K, Schymanski E (2019) S49|CPPDBLISTB|Database of Chemicals possibly (List B) associated with Plastic Packaging (CPPdb). Zenodo. 10.5281/zenodo.2658152
Groh KJ, Backhaus T, Carney-Almroth B et al (2019) Overview of known plastic packaging-associated chemicals and their hazards. Sci Total Environ 651:3253–3268. 10.1016/j.scitotenv.2018.10.015 DOI: 10.1016/j.scitotenv.2018.10.015
The Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers (SCCNFP) (2000) The 1st Update of the Inventory of Ingredients Employed in Cosmetic Products. SECTION II: Perfume and Aromatic Raw Materials. In: Report SCCNFP/0389/00 Final. https://www.norman-network.com/sites/default/files/files/suspectListExchange/SCCNFP038900_INCI-2000.pdf. Accessed 29 Apr 2022
European Commission (2006) COMMISSION DECISION of 9 February 2006 amending Decision 96/335/EC establishing an inventory and a common nomenclature of ingredients employed in cosmetic products (2006/257/EC). Official Journal of the European Union 2006/257/EC:528
von der Ohe P, Aalizadeh R (2017) S13|EUCOSMETICS|Combined Inventory of Ingredients Employed in Cosmetic Products (2000) and Revised Inventory (2006). Zenodo. 10.5281/zenodo.2624119
Oswald P, Alygizakis N, Oswaldova M, Slobodnik J (2020) S70|EISUSGCEIMS|Environmental Institute GC-EI-MS suspect list. Zenodo. 10.5281/zenodo.3894827
Djoumbou-Feunang Y, Schymanski E, Zhang J, Wishart DS (2020) S73|METXBIODB|Metabolite Reaction Database from BioTransformer. Zenodo. 10.5281/zenodo.4056560
Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A et al (2019) BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminform 11:2. 10.1186/s13321-018-0324-5 DOI: 10.1186/s13321-018-0324-5
Swedish Chemicals Agency (KEMI) (2015) Occurrence and use of highly fluorinated substances and alternatives. Report from a Government Assignment, Kemikalieinspektionen, Stockholm, Sweden Report 7/15
Alygizakis N (2018) S21|UATHTARGETS|University of Athens Target List. Zenodo. 10.5281/zenodo.2632411
Alygizakis NA, Besselink H, Paulus GK et al (2019) Characterization of wastewater effluents in the Danube River Basin with chemical screening, in vitro bioassays and antibiotic resistant genes analysis. Environ Int 127:420–429. 10.1016/j.envint.2019.03.060 DOI: 10.1016/j.envint.2019.03.060
Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. 10.1002/jms.1777 DOI: 10.1002/jms.1777
Schymanski E, Schulze T, Alygizakis N (2017) S1|MASSBANK|NORMAN Compounds in MassBank. Zenodo. 10.5281/zenodo.2621391
Jones MR, Pinto E, Torres MA et al (2021) CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res 196:117017. 10.1016/j.watres.2021.117017 DOI: 10.1016/j.watres.2021.117017
Jones MR, Pinto E, Torres MA et al (2021) S75|CyanoMetDB|Comprehensive database of secondary metabolites from cyanobacteria. Zenodo. 10.5281/zenodo.4551528
Haglund P, Rostkowski P (2019) S35|INDOORCT16|Indoor Environment Substances from 2016 Collaborative Trial. Zenodo. https://doi.org/10.5281/zenodo.2653206
Picache JA, Rose BS, Balinski A et al (2019) Collision cross section compendium to annotate and predict multi-omic compound identities. Chem Sci 10:983–993. 10.1039/C8SC04396E DOI: 10.1039/C8SC04396E
Glüge J, Scheringer M, Cousins IT et al (2021) S80|PFASGLUEGE|Overview of PFAS Uses. Zenodo. 10.5281/zenodo.5029173
Glüge J, Scheringer M, Cousins IT et al (2020) An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Processes Impacts 22:2345–2373. 10.1039/D0EM00291G DOI: 10.1039/D0EM00291G
Phillips KA, Yau A, Favela KA et al (2018) Suspect screening analysis of chemicals in consumer products. Environ Sci Technol 52:3125–3135. 10.1021/acs.est.7b04781 DOI: 10.1021/acs.est.7b04781
Kiefer K, Müller A, Singer H, Hollender J (2019) New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res 165:114972. 10.1016/j.watres.2019.114972 DOI: 10.1016/j.watres.2019.114972
Kiefer K, Müller A, Singer H, Hollender J (2020) S60|SWISSPEST19|Swiss Pesticides and Metabolites from Kiefer et al 2019. Zenodo. https://doi.org/10.5281/zenodo.3544759
Schymanski E (2016) S3|NORMANCT15|NORMAN Collaborative Trial Targets and Suspects. Zenodo. 10.5281/zenodo.2621479
Günthardt BF, Hollender J, Hungerbühler K et al (2018) Comprehensive toxic plants-phytotoxins database and its application in assessing aquatic micropollution potential. J Agric Food Chem 66:7577–7588. 10.1021/acs.jafc.8b01639 DOI: 10.1021/acs.jafc.8b01639
Günthardt B (2018) S29|PHYTOTOXINS|Toxic Plant Phytotoxin (TPPT) Database. Zenodo. 10.5281/zenodo.2652994
Postigo C, Gil-Solsona R, Herrera-Batista MF et al (2021) A step forward in the detection of byproducts of anthropogenic organic micropollutants in chlorinated water. Trends Environ Anal Chem 32:e00148. 10.1016/j.teac.2021.e00148 DOI: 10.1016/j.teac.2021.e00148
Postigo C, Gil-Solsona R, Herrera-Batista MF et al (2021) S87|CHLORINETPS|List of chlorination byproducts of 137 CECs and small disinfection byproducts. Zenodo. 10.5281/zenodo.5767356
Oberacher HM (2022) WRTMD or MSforID: Tandem mass spectral identification of small molecules. https://msforid.com/. Accessed 29 Apr 2022
Oberacher H (2019) S31|WRTMSD|Wiley Registry of Tandem Mass Spectral Data, MSforID. Zenodo. 10.5281/zenodo.2653017
Neuwald I, Muschket M, Zahn D et al (2021) Filling the knowledge gap: a suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems. Water Res 204:117645. 10.1016/j.watres.2021.117645 DOI: 10.1016/j.watres.2021.117645
Neuwald I, Muschket M, Zahn D et al (2021) A suspect screening list of 1310 persistent and mobile (PM) candidates. Zenodo. 10.5281/zenodo.5503379
Neuwald I, Muschket M, Zahn D et al (2021) S84|UFZHSFPMT|PMT Suspect List from UFZ and HSF. Zenodo. 10.5281/zenodo.5535287
Dulio V, Aalizadeh R (2017) S16|FRENCHLIST|French Monitoring List. Zenodo. 10.5281/zenodo.2624325
Krauss M, Schulze T (2019) S53|UFZWANATARG|Target Compounds from UFZ WANA. Zenodo. 10.5281/zenodo.3365549
Kiefer K, Du L, Singer H, Hollender J (2021) Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Water Res 196:116994. 10.1016/j.watres.2021.116994 DOI: 10.1016/j.watres.2021.116994
Kiefer K, Du L, Singer H, Hollender J (2021) S82|EAWAGPMT|PMT Suspect List from Eawag. Zenodo. 10.5281/zenodo.5500131
Alygizakis N (2018) S23|EIUBASURF|Surfactant Suspect List from EI and UBA. Zenodo. 10.5281/zenodo.2648765
Fischer S (2019) S39|KEMIWWSUS|Wastewater Suspect List based on Swedish Product Data. Zenodo. 10.5281/zenodo.2653566
Chen W-L, Lin S-C, Huang C-H et al (2021) Wide-scope screening for pharmaceutically active substances in a leafy vegetable cultivated under biogas slurry irrigation. Sci Total Environ 750:141519. 10.1016/j.scitotenv.2020.141519 DOI: 10.1016/j.scitotenv.2020.141519
Chen W-L (2020) S72|NTUPHTW|Pharmaceutically Active Substances Suspect List from National Taiwan University. Zenodo. 10.5281/zenodo.3955664
Wössner A, Singer H (2017) S10|SWISSPHARMA|Pharmaceutical List with Consumption Data. Zenodo. 10.5281/zenodo.2623485
Celma A, Sancho JV, Schymanski EL et al (2020) Improving target and suspect screening high-resolution mass spectrometry workflows in environmental analysis by ion mobility separation. Environ Sci Technol 54:15120–15131. 10.1021/acs.est.0c05713 DOI: 10.1021/acs.est.0c05713
Celma A, Fabregat-Safont D, Ibàñez M et al (2019) S61|UJICCSLIB|Collision Cross Section (CCS) Library from UJI. Zenodo. 10.5281/zenodo.3549476
Dulio V (2017) S15|NORMANPRI|NORMAN Priority List. Zenodo. 10.5281/zenodo.2624273
Groh K, Schymanski E (2019) S48|CPPDBLISTA|Database of Chemicals likely (List A) associated with Plastic Packaging (CPPdb). Zenodo. 10.5281/zenodo.2658143
Kirchner M, Alygizakis N (2019) S51|WRIGCHRMS|GC-HRMS target list of WRI. Zenodo. 10.5281/zenodo.2658169
Singh RR, Lai A, Krier J et al (2021) Occurrence and distribution of pharmaceuticals and their transformation products in Luxembourgish surface waters. ACS Environ Au 1:58–70. 10.1021/acsenvironau.1c00008 DOI: 10.1021/acsenvironau.1c00008
Singh RR (2021) S76|LUXPHARMA|Pharmaceuticals Marketed in Luxembourg. Zenodo. 10.5281/zenodo.4587355
Ruttkies C, Schymanski EL, Strehmel N et al (2019) Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Anal Bioanal Chem 411:4683–4700. 10.1007/s00216-019-01885-0 DOI: 10.1007/s00216-019-01885-0
Schymanski E, Krauss M (2019) S42|HDXNOEX|Hydrogen Deuterium Exchange (HDX) Standard Set. Zenodo. 10.5281/zenodo.2656724
Paulus GK, Hornstra LM, Alygizakis N et al (2019) The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int J Hyg Environ Health 222:635–644. 10.1016/j.ijheh.2019.01.004 DOI: 10.1016/j.ijheh.2019.01.004
Alygizakis N (2016) S6|ITNANTIBIOTIC|Antibiotic List: ITN MSCA ANSWER. Zenodo. 10.5281/zenodo.2621957
Bade R, Bijlsma L, Miller TH et al (2015) Suspect screening of large numbers of emerging contaminants in environmental waters using artificial neural networks for chromatographic retention time prediction and high resolution mass spectrometry data analysis. Sci Total Environ 538:934–941. 10.1016/j.scitotenv.2015.08.078 DOI: 10.1016/j.scitotenv.2015.08.078
Bade R, Schymanski E (2015) S4|UJIBADE|University of Jaume I Bade et al List. Zenodo. 10.5281/zenodo.2621917
Schollée JE, Schymanski EL, Stravs MA et al (2017) Similarity of high-resolution tandem mass spectrometry spectra of structurally related micropollutants and transformation products. J Am Soc Mass Spectrom 28:2692–2704. 10.1007/s13361-017-1797-6 DOI: 10.1007/s13361-017-1797-6
Schollee J, Schymanski E (2020) S66|EAWAGTPS|Parent-Transformation Product Pairs from Eawag. Zenodo. 10.5281/zenodo.3754448
International Agency for Research on Cancer (IARC) (2022) Exposome-Explorer: database on biomarkers of environmental exposures. http://exposome-explorer.iarc.fr/. Accessed 29 Apr 2022
Neveu V, Salek R, Williams AJ, Schymanski EL (2019) S34|EXPOSOMEXPL|Biomarkers from Exposome-Explorer. Zenodo. 10.5281/zenodo.2653032
Neveu V, Moussy A, Rouaix H et al (2017) Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res 45:D979–D984. 10.1093/nar/gkw980 DOI: 10.1093/nar/gkw980
Ogawa Y, Tokunaga E, Kobayashi O et al (2020) Current contributions of organofluorine compounds to the agrochemical industry. iScience 23:101467. 10.1016/j.isci.2020.101467 DOI: 10.1016/j.isci.2020.101467
Ogawa Y, Tokunaga E, Kobayashi O et al (2022) S94|FLUOROPEST|List of 423 FRAC/HRAC/IRAC classified fluoro-agrochemicals. Zenodo. 10.5281/zenodo.6201559
ECHA (2019) S47|ECHAPLASTICS|A list from the plastic additives initiative mapping exercise by ECHA. Zenodo. 10.5281/zenodo.2658139
Schymanski E (2014) S7|EAWAGSURF|Eawag Surfactants Suspect List. Zenodo. 10.5281/zenodo.2621972
Menger F, Boström G, Jonsson O et al (2021) Identification of pesticide transformation products in surface water using suspect screening combined with national monitoring data. Environ Sci Technol 55:10343–10353. 10.1021/acs.est.1c00466 DOI: 10.1021/acs.est.1c00466
Menger F, Boström G (2021) S78|SLUPESTTPS|Pesticides and TPs from SLU, Sweden. Zenodo. 10.5281/zenodo.4687924
Krier J, Singh RR, Kondić T et al (2022) Discovering pesticides and their TPs in Luxembourg waters using open cheminformatics approaches. Environ Int 158:106885. 10.1016/j.envint.2021.106885 DOI: 10.1016/j.envint.2021.106885
Krier J (2020) S69|LUXPEST|Pesticide Screening List for Luxembourg. Zenodo. 10.5281/zenodo.3862688
Arp HPH, Hale SE (2019) REACH: Improvement of guidance and methods for the identification and assessment of PMT/vPvM substances. German Environment Agency (UBA) Texte 126/2019:131. ISBN: 1862-4804, Dessau-Roßlau, Germany.
Arp HPH, Hale SE, Schliebner I, Neumann M (2022) Prioritised PMT/vPvM substances in the REACH registration database. German Environment Agency (UBA) Texte XXX/2022:(accepted). ISBN: 1862-4804, Dessau-Roßlau, Germany
Gago Ferrero P (2016) S8|ATHENSSUS|University of Athens Surfactants and Suspects List. Zenodo. 10.5281/zenodo.2621980
Inoue M, Sumii Y, Shibata N (2020) Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 5:10633–10640. 10.1021/acsomega.0c00830 DOI: 10.1021/acsomega.0c00830
Inoue M, Sumii Y, Shibata N (2022) S92|FLUOROPHARMA|List of 340 ATC classified fluoro-pharmaceuticals. Zenodo. 10.5281/zenodo.5979647
Trace Analysis and Mass Spectrometry Group (2022) TrAMS: trace analysis and mass spectrometry group. http://trams.chem.uoa.gr/. Accessed 29 Apr 2022
Damalas DE, Kokolakis S, Karagiannidis A et al (2020) S65|UATHTARGETSGC|University of Athens GC-APCI-HRMS Target List. Zenodo. 10.5281/zenodo.3753371
Alygizakis N, Choi P, Gomez Ramos MJ et al (2020) S62|NORMANEWS2|NormaNEWS2: retrospective screening of new emerging contaminants. Zenodo. 10.5281/zenodo.3634963
NORMAN Association (2022) NormaNEWS2 Website. https://www.norman-network.net/?q=node/327. Accessed 29 Apr 2022
Mohammed Taha H, Janssen EM-L (2021) S85|MICROCYSTINS|Microcystins from CyanoMetDB. Zenodo. 10.5281/zenodo.5665355
Belova L, Caballero-Casero N, van Nuijs ALN, Covaci A (2021) Ion mobility-high-resolution mass spectrometry (IM-HRMS) for the analysis of contaminants of emerging concern (CECs): database compilation and application to urine samples. Anal Chem 93:6428–6436. 10.1021/acs.analchem.1c00142 DOI: 10.1021/acs.analchem.1c00142
Belova L, Caballero-Casero N, van Nuijs ALN, Covaci A (2021) S79|UACCSCEC|Collision Cross Section (CCS) Library from UAntwerp. Zenodo. 10.5281/zenodo.4704648
Galani K, Aligizakis N, Thomaidis N (2019) S57|GREEKPHARMA|Suspect Pharmaceuticals from the National Organization of Medicine, Greece. Zenodo. https://doi.org/10.5281/zenodo.3248883
Moschet C (2017) S11|SWISSPEST|Swiss Insecticides, Fungicides and TPs. Zenodo. https://doi.org/10.5281/zenodo.2623741
Oltmanns J, Bohlen M, Escher S et al (2019) Final Report: Applying a tested procedure for the identification of potential emerging chemical risks in the food chain to the substances registered under REACH–REACH 2. EFSA Support Publ 16:263. 10.2903/sp.efsa.2019.EN-1597 DOI: 10.2903/sp.efsa.2019.EN-1597
Fischer S, Rostkowski P (2019) S30|PHENANTIOX|A list of Phenolic Antioxidants from KEMI and NILU. Zenodo. 10.5281/zenodo.2653012
Thomaidis NS, Gago-Ferrero P, Ort C et al (2016) Reflection of socioeconomic changes in wastewater: licit and illicit drug use patterns. Environ Sci Technol 50:10065–10072. 10.1021/acs.est.6b02417 DOI: 10.1021/acs.est.6b02417
Alygizakis NA, Gago-Ferrero P, Borova VL et al (2016) Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci Total Environ 541:1097–1105. 10.1016/j.scitotenv.2015.09.145 DOI: 10.1016/j.scitotenv.2015.09.145
Alygizakis N, Thomaidis N (2019) S56|UOATARGPHARMA|Target Pharmaceutical/Drug List from University of Athens. Zenodo. 10.5281/zenodo.3248837
Rüdel H (2018) S28|EUBIOCIDES|Biocides from the NORMAN Priority List. Zenodo. 10.5281/zenodo.2648820
Sjerps R (2016) S5|KWRSJERPS|KWR drinking water suspect list. Zenodo. 10.5281/zenodo.2621942
Alygizakis N, Samanipour S, Thomas K (2017) S12|NORMANEWS|NormaNEWS for retrospective screening of new emerging contaminants. Zenodo. 10.5281/zenodo.2623816
Alygizakis NA, Samanipour S, Hollender J et al (2018) Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environ Sci Technol 52:5135–5144. 10.1021/acs.est.8b00365 DOI: 10.1021/acs.est.8b00365
Renaud J, Sumarah M (2018) S26|MYCOTOXINS|List of Mycotoxins from AAFC. Zenodo. 10.5281/zenodo.2648816
Schulze T (2020) S64|NATOXAQ|NaToxAq: natural toxins and drinking water quality—from source to tap. Zenodo. 10.5281/zenodo.3695174
Aurisano N, Huang L, Milài Canals L et al (2021) Chemicals of concern in plastic toys. Environ Int 146:106194. 10.1016/j.envint.2020.106194 DOI: 10.1016/j.envint.2020.106194
Aurisano N, Huang L, Canals LMI et al (2022) S91| CECTOYS|Chemicals of Emerging Concern (CECs) in plastic toys. Zenodo. 10.5281/zenodo.5933614
LCSB-ECI, Krier J, Schymanski E et al (2020) S68|HSDBTPS|Transformation Products Extracted from HSDB Content in PubChem. Zenodo. https://doi.org/10.5281/zenodo.3827487
European Commission (2020) COMMISSION REGULATION (EU) 2020/2081 of 14 December 2020 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards substances in tattoo inks or permanent make-up. European Commission Regulation C/2020/8758:12
European Commission (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. European Commission Regulation 1272/2008:1355
Commission E, Mohammed Taha H, Schymanski E (2021) S86|TATTOOINK|TATTOOINK as per EU regulation 2020/2081. Zenodo. 10.5281/zenodo.5710243
US EPA (2022) Chemical Contaminants—CCL 4. https://www.epa.gov/ccl/chemical-contaminants-ccl-4. Accessed 29 Apr 2022
Epa US, Schymanski EL, Williams AJ (2019) S41|CCL4|CCL 4 Chemical Candidate List. Zenodo. 10.5281/zenodo.2656716
US EPA (2022) Contaminant Candidate List 5 (CCL 5). https://www.epa.gov/ccl/contaminant-candidate-list-5-ccl-5. Accessed 29 Apr 2022
Epa US, Schymanski E (2021) S83|CCL5|Contaminant Candidate List CCL 5 (Draft). Zenodo. 10.5281/zenodo.5533801
Torres S, Schymanski E, Ramirez N (2019) S52|THSMOKE|Thirdhand Smoke (THS) Compounds. Zenodo. 10.5281/zenodo.2669466
Sims K, James A, Kärrman A et al (2022) S95|PFASANEXCH|PFAS List from the NORMAN PFAS Analytical Exchange Activity. Zenodo. 10.5281/zenodo.6384309
NORMAN Association, UK Environment Agency, Sims K, PFAS Analytical Exchange Steering Committee (2022) 2021 NORMAN network PFAS Analytical Exchange Final Report. https://www.norman-network.net/sites/default/files/files/QA-QC%20Issues/2021%20NORMAN%20network%20PFAS%20Analytical%20Exchange%20Final%20Report%2014022022.pdf. Accessed 4 Jul 2022
Arp HPH, Hale SE (2020) S63|UBADWGW|REACH Registered Substances Detected in Drinking (DW) or Groundwater (GW). Zenodo. 10.5281/zenodo.3637629
Aalizadeh R (2019) S59|NPINESCT|Natural Product Insecticides. Zenodo. 10.5281/zenodo.3544741
Fischer S (2020) S67|TBUTYLPHENOLS|List of tert-butyl phenols from KEMI. Zenodo. 10.5281/zenodo.3779848
German Environment Agency (UBA) (2022) S97|UBABPAALT|List of Bisphenol A Alternatives from UBA. Zenodo. 10.5281/zenodo.6405325
Eilebrecht E, Wenzel A, Teigeler M, et al (2020) Bewertung des endokrinen Potenzials von Bisphenol Alternativstoffen in umweltrelevanten Verwendungen (in German): Evaluation of the Endocrine Potential of Bisphenol Alternatives in Environmentally-relevant Uses. German Environment Agency (UBA) Texte 123/2019, Dessau-Roßlau, Germany:88
German Environment Agency (UBA) Division IV 1.2 (Biocides) (2021) Empfehlungslisten für die Untersuchung der Umweltbelastung durch Biozide: Aktualisierung der Stofflisten des Berichts UBA-TEXTE 15/2017 (in German): Recommendations to investigate environmental contamination with biocides: updating the chemical lists from UBA-TEXTE 15/2017. German Environment Agency (UBA) Addendum to Texte 114/2017, Dessau-Roßlau, Germany:27
German Environment Agency (UBA) Division IV 1.2 (Biocides) (2017) Are biocide emissions into the environment already at alarming levels? Recommendations of the German Environment Agency (UBA) for an approach to study the impact of biocides on the environment. German Environment Agency (UBA) Texte 114/2017, Dessau-Roßlau, Germany:67
German Environment Agency (UBA), Mohammed Taha H (2021) S88|UBABIOCIDES|List of Prioritized Biocides from UBA. Zenodo. 10.5281/zenodo.5767494
Epa US (2019) S40|ALGALTOX|Algal toxins list from CompTox. Zenodo. 10.5281/zenodo.2656710
Swedish Chemicals Agency (KEMI) (2017) Bisfenoler—en kartläggning och analys (in Swedish). EN: Bisphenols—a mapping and analysis. Kemikalieinspektionen, Stockholm, Sweden Rapport 5/17:177
Rostkowski P, Fischer S (2017) S20|BISPHENOLS|Bisphenols. Zenodo. 10.5281/zenodo.2631745
Merino C, Vinaixa M, Ramirez N (2021) S81|THSTPS|Thirdhand Smoke Specific Metabolites. Zenodo. 10.5281/zenodo.5394629
Schymanski E, Wang Z, Wolf R, Arp HPH (2022) S90|ZEROPMBOX1|ZeroPM Box 1 Substances. Zenodo. 10.5281/zenodo.5854251
Norwegian Geotechnical Institute (NGI) Welcome to ZeroPM: Zero Pollution of Persistent, Mobile Substances. https://zeropm.eu/. Accessed 29 Apr 2022
Schymanski EL, Williams AJ (2019) S44|STATINS|Statins Collection from Public Resources. Zenodo. 10.5281/zenodo.2656736
Schymanski, E. & Hakkinen, P. S98|TIRECHEM|Tire-related chemicals in environment from literature, Zenodo, 10.5281/zenodo.6405358 (2022).
US Environmental Protection Agency (2022) CompTox Chemicals Dashboard: Chemical Lists Page. https://comptox.epa.gov/dashboard/chemical-lists. Accessed 30 May 2022
US EPA, NCBI/NLM/NIH (2022) PubChem Classification Browser: EPA DSSTox Tree (PubChem CompTox Chemicals Dashboard Chemical Lists Tree). https://pubchem.ncbi.nlm.nih.gov/classification/#hid=105. Accessed 30 May 2022
Schymanski EL, Mohammed Taha H (2022) NORMAN-SLE Repository. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE. Accessed 30 May 2022
Schymanski EL (2022) NORMAN-SLE Zenodo Statistics 2022-04-28. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/stats/NORMAN-SLE_Zenodo_stats_20220428.csv. Accessed 30 May 2022
Schymanski EL (2022) NORMAN-SLE Zenodo Citations 2022-05-01. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/stats/NORMAN-SLE_Zenodo_Citations_20220501.csv. Accessed 30 May 2022
Nikolopoulou V, Aalizadeh R, Nika M-C, Thomaidis NS (2022) TrendProbe: time profile analysis of emerging contaminants by LC-HRMS non-target screening and deep learning convolutional neural network. J Hazard Mater 428:128194. 10.1016/j.jhazmat.2021.128194 DOI: 10.1016/j.jhazmat.2021.128194
Aalizadeh R, Alygizakis NA, Schymanski EL et al (2021) Development and application of liquid chromatographic retention time indices in HRMS-based suspect and nontarget screening. Anal Chem 93:11601–11611. 10.1021/acs.analchem.1c02348 DOI: 10.1021/acs.analchem.1c02348
McEachran AD, Balabin I, Cathey T et al (2019) Linking in silico MS/MS spectra with chemistry data to improve identification of unknowns. Sci Data 6:141. 10.1038/s41597-019-0145-z DOI: 10.1038/s41597-019-0145-z
Alygizakis N, Konstantakos V, Bouziotopoulos G et al (2022) A multi-label classifier for predicting the most appropriate instrumental method for the analysis of contaminants of emerging concern. Metabolites 12:199. 10.3390/metabo12030199 DOI: 10.3390/metabo12030199
Schymanski EL, Kondić T, Neumann S et al (2021) Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J Cheminform 13:19. 10.1186/s13321-021-00489-0 DOI: 10.1186/s13321-021-00489-0
Giné R, Capellades J, Badia JM et al (2021) HERMES: a molecular-formula-oriented method to target the metabolome. Nat Methods 18:1370–1376. 10.1038/s41592-021-01307-z DOI: 10.1038/s41592-021-01307-z
Nandika D, Karlinasari L, Arinana A et al (2021) Chemical components of fungus comb from Indo-Malayan termite Macrotermes gilvus hagen mound and its bioactivity against wood-staining fungi. Forests 12:1591. 10.3390/f12111591 DOI: 10.3390/f12111591
Dekić MS, Radulović NS, Selimović ES, Boylan F (2021) A series of esters of diastereomeric menthols: comprehensive mass spectral libraries and gas chromatographic data. Food Chem 361:130130. 10.1016/j.foodchem.2021.130130 DOI: 10.1016/j.foodchem.2021.130130
Wang Q, Ruan Y, Jin L et al (2021) Target, nontarget, and suspect screening and temporal trends of per- and polyfluoroalkyl substances in marine mammals from the South China Sea. Environ Sci Technol 55:1045–1056. 10.1021/acs.est.0c06685 DOI: 10.1021/acs.est.0c06685
Brase RA, Schwab HE, Li L, Spink DC (2022) Elevated levels of per- and polyfluoroalkyl substances (PFAS) in freshwater benthic macroinvertebrates from the Hudson River Watershed. Chemosphere 291:132830. 10.1016/j.chemosphere.2021.132830 DOI: 10.1016/j.chemosphere.2021.132830
Yukioka S, Tanaka S, Suzuki Y et al (2021) Data-independent acquisition with ion mobility mass spectrometry for suspect screening of per- and polyfluoroalkyl substances in environmental water samples. J Chromatogr A 1638:461899. 10.1016/j.chroma.2021.461899 DOI: 10.1016/j.chroma.2021.461899
Le Moigne D, Demay J, Reinhardt A et al (2021) Dynamics of the metabolome of Aliinostoc sp. PMC 882.14 in response to light and temperature variations. Metabolites 11:745. 10.3390/metabo11110745 DOI: 10.3390/metabo11110745
Libin Xu Lab (2022) CCSbase: An integrated interface for CCS database and prediction. https://ccsbase.net/. Accessed 23 Jul 2022
Ross DH, Cho JH, Xu L (2020) Breaking down structural diversity for comprehensive prediction of ion-neutral collision cross sections. Anal Chem 92:4548–4557. 10.1021/acs.analchem.9b05772 DOI: 10.1021/acs.analchem.9b05772
Zhang J, Thiessen PA, Schymanski EL et al (2022) PubChem: Aggregated CCS Classification Tree. https://pubchem.ncbi.nlm.nih.gov/classification/#hid=106. Accessed 1 May 2022
Schymanski EL (2022) Finding MS(/MS) Information for NORMAN-SLE lists via PubChem. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/docs/SLEwithMS.md. Accessed 4 Jul 2022
Schymanski EL (2022) Finding CCS Values for NORMAN-SLE lists via PubChem. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/docs/SLEwithCCS.md. Accessed 4 Jul 2022
Schymanski E, Zhang J, Thiessen P, Bolton E (2022) Experimental CCS values in PubChem. Zenodo. 10.5281/zenodo.6800138
Schymanski E, Bolton E, Cheng T et al (2021) Transformations in PubChem—full dataset. Zenodo. 10.5281/zenodo.5644560
Helmus R, van de Velde B, Brunner AM et al (2022) PatRoon 2.0: improved non-target analysis workflowsincluding automated transformation product screening. JOSS 7:4029. 10.21105/joss.04029 DOI: 10.21105/joss.04029
Bugsel B, Bauer R, Herrmann F et al (2022) LC-HRMS screening of per- and polyfluorinated alkyl substances (PFAS) in impregnated paper samples and contaminated soils. Anal Bioanal Chem 414:1217–1225. 10.1007/s00216-021-03463-9 DOI: 10.1007/s00216-021-03463-9
Martin JW, Mabury SA, O’Brien PJ (2005) Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes. Chem Biol Interact 155:165–180. 10.1016/j.cbi.2005.06.007 DOI: 10.1016/j.cbi.2005.06.007
Alhelou R, Seiwert B, Reemtsma T (2019) Hexamethoxymethylmelamine—a precursor of persistent and mobile contaminants in municipal wastewater and the water cycle. Water Res 165:114973. 10.1016/j.watres.2019.114973 DOI: 10.1016/j.watres.2019.114973
Baesu A, Audet C, Bayen S (2021) Application of non-target analysis to study the thermal transformation of malachite and leucomalachite green in brook trout and shrimp. Curr Res Food Sci 4:707–715. 10.1016/j.crfs.2021.09.010 DOI: 10.1016/j.crfs.2021.09.010
Baesu A, Audet C, Bayen S (2022) Evaluation of different extractions for the metabolite identification of malachite green in brook trout and shrimp. Food Chem 369:130567. 10.1016/j.foodchem.2021.130567 DOI: 10.1016/j.foodchem.2021.130567
McEachran AD, Mansouri K, Grulke C et al (2018) “MS-Ready” structures for non-targeted high-resolution mass spectrometry screening studies. J Cheminform 10:45. 10.1186/s13321-018-0299-2 DOI: 10.1186/s13321-018-0299-2
Aalizadeh R, von der Ohe PC, Thomaidis NS (2017) Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by Ant Colony Optimization-Support Vector Machine QSTR models. Environ Sci Processes Impacts 19:438–448. 10.1039/C6EM00679E DOI: 10.1039/C6EM00679E
Schymanski EL (2022) Overlap of NORMAN-SLE and CompTox via PubChem. In: ECI GitLab Pages. https://gitlab.lcsb.uni.lu/eci/NORMAN-SLE/-/blob/master/stats/misc/PubChem_CompTox_SLE.md. Accessed 11 Jul 2022
Alygizakis NA, Oswald P, Thomaidis NS et al (2019) NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. TrAC Trends Anal Chem 115:129–137. 10.1016/j.trac.2019.04.008 DOI: 10.1016/j.trac.2019.04.008
Federal Office for the Environment (FOEN) (2022) Chlorothalonil metabolites in groundwater. https://www.bafu.admin.ch/bafu/en/home/themen/thema-wasser/wasser--fachinformationen/zustand-der-gewaesser/zustand-des-grundwassers/grundwasser-qualitaet/pflanzenschutzmittel-im-grundwasser/chlorothalonil-metaboliten-im-grundwasser.html. Accessed 20 Jul 2022
Kiefer K, Müller A, Singer H et al (2019) Pflanzenschutzmittel-metaboliten im Grundwasser (EN: Pesticide Metabolites in Groundwater). Aqua Gas 99:14–23
The FAIRsharing Community, Sansone S-A, McQuilton P et al (2019) FAIRsharing as a community approach to standards, repositories and policies. Nat Biotechnol 37:358–367. https://doi.org/10.1038/s41587-019-0080-8
ELIXIR Europe (2022) Project 26: Shedding the light on unknown chemical substances (BioHackathon Europe 2022). In: GitHub. https://github.com/elixir-europe/biohackathon-projects-2022/tree/main/26. Accessed 11 Jul 2022
European Chemicals Agency (ECHA) (2022) Information on biocides—ECHA. https://echa.europa.eu/information-on-chemicals/biocidal-active-substances. Accessed 6 Jul 2022
Neveu V, Nicolas G, Salek RM et al (2019) Exposome-Explorer 2.0: an update incorporating candidate dietary biomarkers and dietary associations with cancer risk. Nucleic Acids Res 48:D908–D912. 10.1093/nar/gkz1009 DOI: 10.1093/nar/gkz1009
International Agency for Research on Cancer (IARC) (2022) Exposome-Explorer: Microbial metabolites. http://exposome-explorer.iarc.fr/microbial_metabolites. Accessed 10 Jul 2022
Neveu V, Nicolas G, Amara A et al (2022) The human microbial exposome: expanding the Exposome-Explorer database with gut microbial metabolites. In Review. 10.21203/rs.3.rs-1754003/v2 DOI: 10.21203/rs.3.rs-1754003/v2
California Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency (2022) Proposition 65 Warnings Website - Your right to know. https://www.p65warnings.ca.gov/node. Accessed 6 Jul 2022
Neveu V, Perez-Jimenez J, Vos F et al (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database 2010:bap024–bap024. 10.1093/database/bap024
Rothwell JA, Urpi-Sarda M, Boto-Ordonez M et al (2012) Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database 2012:bas031–bas031. https://doi.org/10.1093/database/bas031
Rothwell JA, Perez-Jimenez J, Neveu V et al (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013:bat070–bat070. https://doi.org/10.1093/database/bat070
Geueke B, Groh KJ, Maffini MV et al (2022) Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use. Crit Rev Food Sci Nutri 1–11. 10.1080/10408398.2022.2067828
Faber A-H, Annevelink M, Gilissen HK et al (2017) How to adapt chemical risk assessment for unconventional hydrocarbon extraction related to the water system. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 246. Springer International Publishing, Cham, pp 1–32
Faber A-H, Brunner AM, Dingemans MML et al (2021) Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening. Sci Total Environ 794:148727. 10.1016/j.scitotenv.2021.148727 DOI: 10.1016/j.scitotenv.2021.148727
Faber A-H, Annevelink MPJA, Schot PP et al (2019) Chemical and bioassay assessment of waters related to hydraulic fracturing at a tight gas production site. Sci Total Environ 690:636–646. 10.1016/j.scitotenv.2019.06.354 DOI: 10.1016/j.scitotenv.2019.06.354
NORMAN Association (2022) NORMAN Working Group 1: Prioritisation Website. https://www.norman-network.com/?q=node/50. Accessed 12 Jul 2022
van Dijk J, Gustavsson M, Dekker SC, van Wezel AP (2021) Towards ‘one substance—one assessment’: an analysis of EU chemical registration and aquatic risk assessment frameworks. J Environ Manage 280:111692. 10.1016/j.jenvman.2020.111692 DOI: 10.1016/j.jenvman.2020.111692