Article (Périodiques scientifiques)
Joint structural annotation of small molecules using liquid chromatography retention order and tandem mass spectrometry data
Bach, Eric; SCHYMANSKI, Emma; Rousu, Juho
2022In Nature Machine Intelligence, 4 (12), p. 1224--1237
Peer reviewed
 

Documents


Texte intégral
Bach_etal_2022_LCMS2Struct_s42256-022-00577-2.pdf
Postprint Éditeur (9.67 MB)
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Télécharger

All rights reserved


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Abstract Structural annotation of small molecules in biological samples remains a key bottleneck in untargeted metabolomics, despite rapid progress in predictive methods and tools during the past decade. Liquid chromatography–tandem mass spectrometry, one of the most widely used analysis platforms, can detect thousands of molecules in a sample, the vast majority of which remain unidentified even with best-of-class methods. Here we present LC-MS2Struct, a machine learning framework for structural annotation of small-molecule data arising from liquid chromatography–tandem mass spectrometry (LC-MS2) measurements. LC-MS2Struct jointly predicts the annotations for a set of mass spectrometry features in a sample, using a novel structured prediction model trained to optimally combine the output of state-of-the-art MS2 scorers and observed retention orders. We evaluate our method on a dataset covering all publicly available reversed-phase LC-MS2 data in the MassBank reference database, including 4,327 molecules measured using 18 different LC conditions from 16 contributors, greatly expanding the chemical analytical space covered in previous multi-MSscorer evaluations. LC-MS2Struct obtains significantly higher annotation accuracy than earlier methods and improves the annotation accuracy of state-of-the-art MS2 scorers by up to 106\%. The use of stereochemistry-aware molecular fingerprints improves prediction performance, which highlights limitations in existing approaches and has strong implications for future computational LC-MS2 developments.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Bach, Eric
SCHYMANSKI, Emma  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Rousu, Juho
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Joint structural annotation of small molecules using liquid chromatography retention order and tandem mass spectrometry data
Date de publication/diffusion :
2022
Titre du périodique :
Nature Machine Intelligence
ISSN :
2522-5839
Volume/Tome :
4
Fascicule/Saison :
12
Pagination :
1224--1237
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR12341006 - Environmental Cheminformatics To Identify Unknown Chemicals And Their Effects, 2018 (01/10/2018-30/09/2023) - Emma Schymanski
Disponible sur ORBilu :
depuis le 27 janvier 2023

Statistiques


Nombre de vues
130 (dont 1 Unilu)
Nombre de téléchargements
89 (dont 0 Unilu)

citations Scopus®
 
27
citations Scopus®
sans auto-citations
25
citations OpenAlex
 
33
citations WoS
 
28

Bibliographie


Publications similaires



Contacter ORBilu