Article (Périodiques scientifiques)
A Deep Learning Approach for Reconstruction in Millimeter-Wave Imaging Systems
ROSTAMI ABENDANSARI, Peyman
2022In IEEE Transactions on Antennas and Propagation
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
A_Deep_Learning_Approach_for_Reconstruction_in_Millimeter_Wave_Imaging_Systems.pdf
Postprint Auteur (2.52 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
deep neural networks; inverse problem; millimeter wave imaging; reconstruction; wide-band imaging
Résumé :
[en] In millimeter-wave (MMW) imaging, the objects of interest are oftentimes modeled as 2D binary (black and white) shapes with white pixels representing the reflecting interior of the object. However, due to propagation of the scattered waves, the continuous-domain binary images are convolved with a so-called point-spread function (PSF) before being digitized by means of sampling. As the 2D PSF is both non-separable and non-vanishing in the case of MMW imaging, exact recovery is quite complicated. In this paper, we propose a deep learning approach for image reconstruction. We should highlight that the wave scatterings are suitably represented with complex-valued quantities, while standard deep neural networks (DNN) accept real-valued inputs. To overcome this challenge, we separate the real and imaginary parts as if we had two imaging modalities and concatenate them to form a real-valued input with larger size. Fortunately, the network automatically learns how to combine the mutual information between these modalities to reconstruct the final image. Among the advantages of the proposed method are improved robustness against additive noise and mismatch errors of imaging frequency and object to antenna distance; indeed, the method works well in wide-band imaging scenarios over a wide range of object to antenna distances even in presence of high noise levels without requiring a separate calibration stage. We test the method with synthetic data simulated with software as well as real recordings in the laboratory.
Centre de recherche :
- Interdisciplinary Centre for Security, Reliability and Trust (SnT) > CVI² - Computer Vision Imaging & Machine Intelligence
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ROSTAMI ABENDANSARI, Peyman ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Deep Learning Approach for Reconstruction in Millimeter-Wave Imaging Systems
Date de publication/diffusion :
05 octobre 2022
Titre du périodique :
IEEE Transactions on Antennas and Propagation
ISSN :
0018-926X
eISSN :
1558-2221
Maison d'édition :
Institute of Electrical and Electronics Engineers, Etats-Unis
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 27 janvier 2023

Statistiques


Nombre de vues
123 (dont 5 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations OpenAlex
 
13

Bibliographie


Publications similaires



Contacter ORBilu