[en] Diabetic retinopathy (DR) is a worldwide problem associated with the human retina. It leads to minor and major blindness and is more prevalent among adults. Automated screening saves time of medical care specialists. In this work, we have used different deep learning (DL) based 3D convolutional neural network (3D-CNN) architectures for binary and multiclass (5 classes) classification of DR. We have considered mild, moderate, no, proliferate, and severe DR categories. We have deployed two artificial data augmentation/enhancement methods: random weak Gaussian blurring and random shift along with their combination to accomplish these tasks in the spatial domain. In the binary classification case, we have found the performance of 3D-CNN architecture trained by deploying combined augmentation methods to be the best, while in the multiclass case, the performance of model trained without augmentation is the best. It is observed that the DL algorithms working with large volumes of data may achieve better performances as compared to the methods working with small volumes of data.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Tufail, Ahsan Bin
Ullah, Inam
Khan, Wali Ullah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Asif, Muhammad
Ahmad, Ijaz
Ma, Yong-Kui
Khan, Rahim
Ullah, Kalim
Ali, Md. Sadek
External co-authors :
yes
Language :
English
Title :
Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples
Alternative titles :
[en] Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples
Publication date :
November 2021
Journal title :
Wireless Communications and Mobile Computing
ISSN :
1530-8669
eISSN :
1530-8677
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
Lin X., Xu Y., Pan X., Xu J., Ding Y., Sun X., Song X., Ren Y., Shan P. F., Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific Reports 2020, 10, 1, 1, 11, 10.1038/s41598-020-71908-9
Kalyani G., Janakiramaiah B., Karuna A., Prasad L. V. N., Diabetic retinopathy detection and classification using capsule networks. Complex & Intelligent Systems 2021, 10.1007/s40747-021-00318-9
Decencière E., Cazuguel G., Zhang X., Thibault G., Klein J.-C., Meyer F., Marcotegui B., Quellec G., Lamard M., Danno R., Elie D., Massin P., Viktor Z., Erginay A., Laÿ B., Chabouis A., TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 2013, 34, 2, 196, 203, 10.1016/j.irbm.2013.01.010, 2-s2.0-84876118589
Riaz H., Park J., Choi H., Kim H., Kim J., Deep and densely connected networks for classification of diabetic retinopathy. Diagnostics 2020, 10, 1, 24, 10.3390/diagnostics10010024
Sooraj S., Bedeeuzzaman M., Automatic classification of diabetic retinopathy based on deep learning-a review. 2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy (ICFCR) 2020 Malappuram, India 1, 5, 10.1109/ICFCR50903.2020.9249980
Mookiah M. R. K., Acharya U. R., Chua C. K., Lim C. M., Ng E. Y. K., Laude A., Computer-aided diagnosis of diabetic retinopathy: a review. Computers in Biology and Medicine 2013, 43, 12, 2136, 2155, 10.1016/j.compbiomed.2013.10.007, 2-s2.0-84887009262, 24290931
Ahmad I., Ullah I., Khan W. U., Ur Rehman A., Adrees M. S., Saleem M. Q., Cheikhrouhou O., Hamam H., Shafiq M., Efficient algorithms for E-healthcare to solve multiobject fuse detection problem. Journal of Healthcare Engineering 2021, 2021, 16, 10.1155/2021/9500304, 9500304
You C., Cong W., Wang G., Yang Q., Shan H., Gjesteby L., Li G., Ju S., Zhang Y., Zhao Z., Zhang Y., Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access 2018, 6, 41839, 41855, 10.1109/ACCESS.2018.2858196, 2-s2.0-85050396638, 30906683
Samanta A., Saha A., Satapathy S. C., Fernandes S. L., Zhang Y. D., Automated detection of diabetic retinopathy using convolutional neural networks on a small dataset. Pattern Recognition Letters 2020, 135, 293, 298, 10.1016/j.patrec.2020.04.026
Shiva S. R., NilambarSethi R. R., Gadiraju M., Extensive analysis of machine learning algorithms to early detection of diabetic retinopathy. Materials Today: Proceedings 2020
Saxena G., Verma D. K., Paraye A., Rajan A., Rawat A., Improved and robust deep learning agent for preliminary detection of diabetic retinopathy using public datasets. Intelligence-Based Medicine 2020, 3-4, article 100022, 10.1016/j.ibmed.2020.100022
Butt M. M., Latif G., Iskandar D. N. F. A., Alghazo J., Khan A. H., Multi-channel convolutions neural network based diabetic retinopathy detection from fundus images. Procedia Computer Science 2019, 163, 283, 291, 10.1016/j.procs.2019.12.110
Islam M. M., Yang H.-C., Poly T. N., Jian W.-S., Li Y. C., Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: a systematic review and meta-analysis. Computer Methods and Programs in Biomedicine 2020, 191, 105320, 10.1016/j.cmpb.2020.105320
Safi H., Safi S., Hafezi-Moghadam A., Ahmadieh H., Early detection of diabetic retinopathy. Survey of Ophthalmology 2018, 63, 5, 601, 608, 10.1016/j.survophthal.2018.04.003, 2-s2.0-85048731952
Bhatkar A. P., Kharat G. U., Detection of diabetic retinopathy in retinal images using MLP classifier. 2015 IEEE International Symposium on Nanoelectronic and Information Systems 2015 Indore, India 331, 335, 10.1109/inis.2015.30, 2-s2.0-84966649645
Shanthi T., Sabeenian R. S., Modified Alexnet architecture for classification of diabetic retinopathy images. Computers & Electrical Engineering 2019, 76, 56, 64, 10.1016/j.compeleceng.2019.03.004, 2-s2.0-85063035970
Wan S., Liang Y., Zhang Y., Deep convolutional neural networks for diabetic retinopathy detection by image classification. Computers & Electrical Engineering 2018, 72, 274, 282, 10.1016/j.compeleceng.2018.07.042, 2-s2.0-85054296119
Zago G. T., Andreāo R. V., Dorizzi B., Teatini Salles E. O., Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Computers in Biology and Medicine 2020, 116, 103537, 10.1016/j.compbiomed.2019.103537
Gulshan V., Peng L., Coram M., Stumpe M. C., Wu D., Narayanaswamy A., Venugopalan S., Widner K., Madams T., Cuadros J., Kim R., Raman R., Nelson P. C., Mega J. L., Webster D. R., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 22, 2402, 2410, 10.1001/jama.2016.17216, 2-s2.0-85007529863, 27898976
Sayres R., Taly A., Rahimy E., Blumer K., Coz D., Hammel N., Krause J., Narayanaswamy A., Rastegar Z., Wu D., Xu S., Barb S., Joseph A., Shumski M., Smith J., Sood A. B., Corrado G. S., Peng L., Webster D. R., Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 2019, 126, 4, 552, 564, 10.1016/j.ophtha.2018.11.016, 2-s2.0-85062733485, 30553900
Choi J. Y., Yoo T. K., Seo J. G., Kwak J., Um T. T., Rim T. H., Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database. PLoS One 2017, 12, 11, article e0187336, 10.1371/journal.pone.0187336, 2-s2.0-85033365395, 29095872
Islam S. M. S., Hasan M. M., Abdullah S., Deep learning based early detection and grading of diabetic retinopathy using retinal fundus images. 2018, http://arxiv.org/abs/1812.10595
Shankar K., Sait A. R. W., Gupta D., Lakshmanaprabu S. K., Khanna A., Pandey H. M., Automated detection and classification of fundus diabetic retinopathy images using synergic deep learning model. Pattern Recognition Letters 2020, 133, 210, 216, 10.1016/j.patrec.2020.02.026
Beede E., Baylor E., Hersch F., Iurchenko A., Wilcox L., Ruamviboonsuk P., Vardoulakis L. M., A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 2020 Honolulu, HI, USA 1, 12, 10.1145/3313831.3376718
Khare N., Devan P., Chowdhary C., Bhattacharya S., Singh G., Singh S., Yoon B., SMO-DNN: spider monkey optimization and deep neural network hybrid classifier model for intrusion detection. Electronics 2020, 9, 4, 692, 10.3390/electronics9040692
Qureshi I., Ma J., Abbas Q., Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning. Multimedia Tools and Applications 2021, 80, 8, 11691, 11721, 10.1007/s11042-020-10238-4
Das S., Kharbanda K., M S., Raman R., D E. D., Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomedical Signal Processing and Control 2021, 68, article 102600, 10.1016/j.bspc.2021.102600
Li F., Wang Y., Xu T., Lin D., Yan L., Jiang M., Zhang X., Jiang H., Wu Z., Zou H., Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Eye 2021
Limwattanayingyong J., Nganthavee V., Seresirikachorn K., Singalavanija T., Soonthornworasiri N., Ruamviboonsuk V., Rao C., Raman R., Grzybowski A., Schaekermann M., Peng L. H., Webster D. R., Semturs C., Krause J., Sayres R., Hersch F., Tiwari R., Liu Y., Ruamviboonsuk P., Longitudinal screening for diabetic retinopathy in a nationwide screening program: comparing deep learning and human graders. Journal of Diabetes Research 2020, 2020, 8, 10.1155/2020/8839376, 8839376
Tsiknakis N., Theodoropoulos D., Manikis G., Ktistakis E., Boutsora O., Berto A., Scarpa A., Scarpa A., Fotiadis D. I., Marias K., Deep learning for diabetic retinopathy detection and classification based on fundus images: a review. Computers in Biology and Medicine 2021, 135, article 104599, 10.1016/j.compbiomed.2021.104599
Karakaya M., Hacisoftaoglu R. E., Comparison of smartphone-based retinal imaging systems for diabetic retinopathy detection using deep learning. BMC Bioinformatics 2020, 21, S4, 259, 10.1186/s12859-020-03587-2
Vinyals O., Blundell C., Lillicrap T., Kavukcuoglu K., Wierstra D., Matching networks for one shot learning. Advances in Neural Information Processing Systems 2016, Curran Associates, Inc. 3630, 3638
Snell J., Swersky K., Zemel R., Prototypical networks for few-shot learning. Advances in Neural Information Processing Systems 2017, Curran Associates, Inc. 4077, 4087
Sung F., Yang Y., Zhang L., Xiang T., Torr P. H. S., Hospedales T. M., Learning to compare: relation network for few-shot learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2018 Salt Lake City, UT, USA 1199, 1208, 10.1109/cvpr.2018.00131, 2-s2.0-85061641334
Xia J., Deng D., Fan D., A note on implementation methodologies of deep learning-based signal detection for conventional MIMO transmitters. IEEE Transactions on Broadcasting 2020, 66, 3, 744, 745, 10.1109/TBC.2020.2985592
He K., Wang Z., Li D., Zhu F., Fan L., Ultra-reliable MU-MIMO detector based on deep learning for 5G/B5G-enabled IoT. Physical Communication 2020, 43, 101181, 101187, 10.1016/j.phycom.2020.101181
Yousafzai B. K., Afzal S., Rahman T., Khan I., Ullah I., Ur Rehman A., Cheikhrouhou O., Student-performulator: student academic performance using hybrid deep neural network. Sustainability 2021, 13, 17, 9775, 10.3390/su13179775
Khan W. U., Javed M. A., Nguyen T. N., Khan S., Elhalawany B. M., Energy-efficient resource allocation for 6G backscatter-enabled NOMA IoV networks. IEEE Transactions on Intelligent Transportation Systems 2021, 10.1109/TITS.2021.3110942
Li C., Xia J., Liu F., Li D., Fan L., Karagiannidis G. K., Nallanathan A., Dynamic offloading for multiuser Muti-CAP MEC networks: a deep reinforcement learning approach. IEEE Transactions on Vehicular Technology 2021, 70, 3, 2922, 2927, 10.1109/TVT.2021.3058995
Khan W. U., Jameel F., Li X., Bilal M., Tsiftsis T. A., Joint spectrum and energy optimization of NOMA-enabled small-cell networks with QoS guarantee. IEEE Transactions on Vehicular Technology 2021, 70, 8, 8337, 8342, 10.1109/TVT.2021.3095955
Guo Y., Zhao Z., He K., Lai S., Xia J., Fan L., Efficient and flexible management for industrial Internet of Things: a federated learning approach. Computer Networks 2021, 192, 108122, 108129, 10.1016/j.comnet.2021.108122
Khan W. U., Li X., Ihsan A., Khan M. A., Menon V. G., Ahmed M., NOMA-enabled optimization framework for next-generation small-cell IoV networks under imperfect SIC decoding. IEEE Transactions on Intelligent Transportation Systems 2021, 10.1109/TITS.2021.3091402
Li X., Zheng Y., Khan W. U., Zeng M., Li D., Ragesh G. K., Li L., Physical layer security of cognitive ambient backscatter communications for green Internet-of-Things. IEEE Transactions on Green Communications and Networking 2021, 5, 3, 1066, 1076, 10.1109/TGCN.2021.3062060
Khan W. U., Li X., Zeng M., Dobre O. A., Backscatter-enabled NOMA for future 6G systems: a new optimization framework under imperfect SIC. IEEE Communications Letters 2021, 25, 5, 1669, 1672, 10.1109/LCOMM.2021.3052936
Jameel F., Khan W. U., Kumar N., Jantti R., Efficient power-splitting and resource allocation for cellular V2X communications. IEEE Transactions on Intelligent Transportation Systems 2021, 22, 6, 3547, 3556, 10.1109/TITS.2020.3001682
Khan W. U., Jameel F., Kumar N., Jantti R., Guizani M., Backscatter-enabled efficient V2X communication with non-orthogonal multiple access. IEEE Transactions on Vehicular Technology 2021, 70, 2, 1724, 1735, 10.1109/TVT.2021.3056220
Khan A. U., Tanveer M., Khan W. U., Nebhen J., Li X., Zeng M., Dobre O. A., An enhanced spectrum reservation framework for heterogeneous user in CR-enabled IoT networks, IEEE Wireless Communications Letters. Early Access 2021, 10, 1, 10.1109/LWC.2021.3105728
Tufail A. B., Ma Y.-K., Kaabar M. K. A., Martínez F., Junejo A. R., Ullah I., Khan R., Deep learning in cancer diagnosis and prognosis prediction: a minireview on challenges, recent trends, and future directions. Computational and Mathematical Methods in Medicine 2021, 2021, 28, 9025470, 10.1155/2021/9025470
Tufail A. B., Ma Y.-K., Zhang Q.-N., Khan A., Zhao L., Yang Q., Adeel M., Khan R., Ullah I., 3D convolutional neural networks-based multiclass classification of Alzheimer's and Parkinson's diseases using PET and SPECT neuroimaging modalities. Brain Informatics 2021, 8, 1, 23, 10.1186/s40708-021-00144-2
Ji S., Xu W., Yang M., Yu K., 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2013, 35, 1, 221, 231, 10.1109/TPAMI.2012.59, 2-s2.0-84870183903, 22392705
Tang S., Zhou W., Chen L., Lai L., Xia J., Fan L., Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks. Physical Communication 2021, 47, 101381, 101389, 10.1016/j.phycom.2021.101381
Xia J., Fan L., Xu W., Lei X., Chen X., Karagiannidis G. K., Nallanathan A., Secure cache-aided multi-relay networks in the presence of multiple eavesdroppers. IEEE Transactions on Communications 2019, 67, 11, 7672, 7685, 10.1109/TCOMM.2019.2935047
Nair V., Hinton G. E., Rectified linear units improve restricted Boltzmann machines. ICML 2010, Omnipress 807, 814
Khan R., Yang Q., Ullah I., Rehman A. U., Tufail A. B., Noor A., Rehman A., Cengiz K., 3D convolutional neural networks based automatic modulation classification in the presence of channel noise. IET Communications 2021, 10.1049/cmu2.12269
Sayres R., Hammel N., Liu Y., Artificial intelligence, machine learning and deep learning for eye care specialists. Annals of Eye Science 2020, 5, 18, 10.21037/aes.2020.02.05
Ioffe S., Szegedy C., Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning, PMLR, JMLR 2015 France 448, 456
Yin X., Coatrieux J. L., Zhao Q., Liu J., Yang J., Yang J., Quan G., Chen Y., Shu H., Luo L., Domain progressive 3D residual convolution network to improve low-dose CT imaging. IEEE Transactions on Medical Imaging 2019, 38, 12, 2903, 2913, 10.1109/TMI.2019.2917258, 31107644
Ming J., Yi B. S., Zhang Y. G., Low-dose CT image denoising using classification densely connected residual network. KSII Transactions on Internet and Information Systems 2020, 14, 6, 2480, 2496, 10.3837/tiis.2020.06.009
Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R., Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 2014, 15, 1929, 1958
Clevert D.-A., Unterthiner T., Hochreiter S., Fast and accurate deep network learning by exponential linear units (ELUs). 2015, http://arxiv.org/abs/1511.07289
Kingma D. P., Ba J., Adam: a method for stochastic optimization. 2014, http://arxiv.org/abs/1412.6980
Azulay A., Weiss Y., Why do deep convolutional networks generalize so poorly to small image transformations? Journal of Machine Learning Research 2019, 20, 1, 25
Pachade S., Porwal P., Thulkar D., Kokare M., Deshmukh G., Sahasrabuddhe V., Giancardo L., Quellec G., Mériaudeau F., Retinal fundus multi-disease image dataset (RFMiD): a dataset for multi-disease detection research. Data 2021, 6, 2, 14, 10.3390/data6020014