Article (Périodiques scientifiques)
Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples
Tufail, Ahsan Bin; Ullah, Inam; KHAN, Wali Ullah et al.
2021In Wireless Communications and Mobile Computing
Peer reviewed
 

Documents


Texte intégral
6013448.pdf
Postprint Éditeur (2.77 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Diabetic Retinopathy; Retinal Fundus Images; Convolutional Neural Networks
Résumé :
[en] Diabetic retinopathy (DR) is a worldwide problem associated with the human retina. It leads to minor and major blindness and is more prevalent among adults. Automated screening saves time of medical care specialists. In this work, we have used different deep learning (DL) based 3D convolutional neural network (3D-CNN) architectures for binary and multiclass (5 classes) classification of DR. We have considered mild, moderate, no, proliferate, and severe DR categories. We have deployed two artificial data augmentation/enhancement methods: random weak Gaussian blurring and random shift along with their combination to accomplish these tasks in the spatial domain. In the binary classification case, we have found the performance of 3D-CNN architecture trained by deploying combined augmentation methods to be the best, while in the multiclass case, the performance of model trained without augmentation is the best. It is observed that the DL algorithms working with large volumes of data may achieve better performances as compared to the methods working with small volumes of data.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Tufail, Ahsan Bin
Ullah, Inam
KHAN, Wali Ullah  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Asif, Muhammad
Ahmad, Ijaz
Ma, Yong-Kui
Khan, Rahim
Ullah, Kalim
Ali, Md. Sadek
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples
Titre traduit :
[en] Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples
Date de publication/diffusion :
novembre 2021
Titre du périodique :
Wireless Communications and Mobile Computing
ISSN :
1530-8669
eISSN :
1530-8677
Maison d'édition :
John Wiley & Sons, Hoboken, Etats-Unis - New Jersey
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 25 janvier 2023

Statistiques


Nombre de vues
107 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
62
citations Scopus®
sans auto-citations
48
OpenCitations
 
20
citations OpenAlex
 
58
citations WoS
 
36

Bibliographie


Publications similaires



Contacter ORBilu