Microwave sensors; Pure Dielectric Materials; Optimization
Résumé :
[en] This article presents an optimized microwave sensor for the non-contact measurement of complex permittivity and material thickness. The layout of the proposed sensor comprises the parallel combination of an interdigital capacitor (IDC) loaded at the center of the symmetrical differential bridge-type inductor fabricated on an RF-35 substrate (εr = 3.5 and tanδ = 0.0018). The bridge-type differential inductor is introduced to obtain a maximum inductance value with high quality (Q) factor and low tunable resonant frequency. The central IDC structure is configured as a spur-line structure to create a high-intensity coupled electric field (e-field) zone, which significantly interacts with the materials under test (MUTs), resulting in an increased sensitivity. The proposed sensor prototype with optimized parameters generates a resonant frequency at 1.38 GHz for measuring the complex permittivity and material thickness. The experimental results indicated that the resonant frequency of the designed sensor revealed high sensitivities of 41 MHz/mm for thickness with a linear response (r2 = 0.91567), and 53 MHz/Δεr for permittivity with a linear response (r2 = 0.98903). The maximum error ratio for measuring MUTs with a high gap of 0.3 mm between the testing sample and resonator is 6.52%. The presented performance of the proposed sensor authenticates its application in the non-contact measurement of samples based on complex permittivity and thickness.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Ali, Luqman
Wang, Cong
Ullah, Inam
Yousaf, Adnan
KHAN, Wali Ullah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Ullah, Shafi
Khan, Rahim
Alassery, Fawaz
Hamam, Habib
Shafiq, Muhammad
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials
Titre traduit :
[en] Design and Optimization of Microwave Sensor for the Non-Contact Measurement of Pure Dielectric Materials
Date de publication/diffusion :
décembre 2021
Titre du périodique :
Electronics
eISSN :
2079-9292
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI), Basel, Suisse
Safa, M.S.; Nayyeri, V.; Khanjarian, M.; Soleimani, M.; Ramahi, O.M. A CSRR-based sensor for full characterization of magneto-dielectric materials. IEEE Trans. Microw. Theory Tech. 2019, 67, 806–814. [CrossRef]
Shi, P.; Gao, R.; Liu, S.; Yuan, Y. Topology optimization-based design of metamaterial-inspired sensor with improved sensitivity. Sens. Act. A Phys. 2017, 268, 83–90. [CrossRef]
Subbaraj, S.; Ramalingam, V.S.; Kanagasabai, M.; Sundarsingh, E.F.; Selvam, Y.P.; Kingsley, S. Electromagnetic nondestructive material characterization of dielectrics using EBG based planar transmission Line sensor. IEEE Sens. J. 2016, 16, 7081–7087. [CrossRef]
Kiani, S.; Rezaei, P.; Navaei, M.; Abrishamian, M.S. Microwave sensor for detection of solid material permittivity in single/multi-layer samples with high-quality factor. IEEE Sens. J. 2018, 18, 9971–9977. [CrossRef]
Rusni, I.M.; Ismail, A.; Alhawari, A.R.H.; Hamidon, M.N.; Yusof, N.A. An aligned-gap and centered-gap rectangular multiple split-ring resonator for dielectric sensing applications. Sensors 2014, 14, 13134–13148. [CrossRef] [PubMed]
Li, Y.; Bowler, N.; Jhonson, D.B. A resonant microwave patch sensor for detection of layer thickness or permittivity variations in multilayered dielectric structures. IEEE Sens. J. 2011, 11, 5–15. [CrossRef]
Rahman, M.N.; Islam, M.T.; Samsuzzaman, S.M. Resonator based metamaterial sensor to detect unknown materials. Microw. Optical Technol. Lett. 2018, 60, 1681–1685. [CrossRef]
Romera, G.G.; Martinez, F.J.H.; Gil, M.; Martinez, J.J.M.; Vargas, D.S. Submersible printed split-ring resonator-based sensor for thin-film detection and permittivity characterization. IEEE Sens. J. 2016, 16, 3587–3596. [CrossRef]
Karami, M.; Rezaei, P.; Kiani, S.; Sadeghzadeh, R.A. Modified planar sensor for measuring dielectric constant of liquid materials. Electron. Lett. 2017, 53, 1300–1302. [CrossRef]
Jankovic, N.; Radonic, V. A microwave microfluidic sensor based on a dual-mode resonator for dual-sensing applications. Sensors 2017, 17, 2713. [CrossRef]
Benkhaoua, L.; Benhabiles, M.T.; Mouissat, S.; Riabi, M.L. Miniaturized quasi-lumped resonator for dielectric characterization of liquid mixtures. IEEE Sens. J. 2016, 16, 1603–1610. [CrossRef]
Horestani, A.K.; Naqui, J.; Abbott, D.; Fumeaux, C.; Martin, F. Two dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split-ring resonators. Electron. Lett. 2014, 50, 620–622. [CrossRef]
Ebrahimi, A.; Withayachumnankul, W.; Sarawi, S.A.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2014, 14, 1345–1351. [CrossRef]
Saghati, A.P.; Batra, J.S.; Kameoka, J.; Entesari, K. A meta-material inspired wideband microwave interferometry sensor for dielectric spectroscopy of liquid chemicals. IEEE Trans. Microw. Theory Tech. 2017, 65, 2558–2571. [CrossRef]
Shafi, K.T.M.; Jha, A.K.; Akhtar, M.J. Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials. IEEE Sens. J. 2017, 17, 5479–5486. [CrossRef]
Yeo, J.; Lee, J.L. High sensitivity microwave sensor based on an interdigital capacitor shaped defected ground structure for permittivity characterization. Sensors 2019, 19, 498. [CrossRef]
Alahnomi, R.A.; Zakaria, Z.; Ruslan, E.; Rashid, S.R.A.; Bahar, A.A.M. High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection. IEEE Sens. J. 2017, 17, 2766–2775. [CrossRef]
Lee, H.J.; Lee, J.H.; Moon, H.S.; Jang, I.S.; Choi, J.S.; Yook, J.G.; Jung, H.L. A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules. Sens. Act. B Chem. 2012, 169, 26–31. [CrossRef]
Velez, P.; Su, L.; Grenier, K.; Contreras, J.M.; Dubuc, D.; Martin, F. Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids. IEEE Sens. J. 2017, 17, 6589–6598. [CrossRef]
Ebrahimi, A.; Scott, J.; Ghorbani, K. Ultrahigh sensitivity microwave sensor for microfluidic complex permittivity measurement. IEEE Trans. Microw. Theory Tech. 2019, 67, 4269–4277. [CrossRef]
Mamishev, A.V.; Du, Y.; Lesieutre, B.C.; Zahn, M. Development and applications of fringing electric field dielectrometry sensors and parameter estimation algorithms. J. Electrostat. 1999, 46, 109–123. [CrossRef]
Bonache, J.; Gil, M.; Gil, I.; Garcia, J.; Martin, F. On the electrical characteristics of complementary metamaterial resonators. IEEE Micro. Wirel. Comp. Lett. 2006, 16, 543–545. [CrossRef]
Sun, H.R.; Du, G.; Liu, G.; Sun, X.; Tang, T.; Liu, W.; Li, R. Symmetric coplanar waveguide sensor loaded with interdigital capacitor for permittivity characterization. Int. J. RF Microw. Comput. Eng. 2020, 30, e22023. [CrossRef]
Yang, C.L.; Lee, C.S.; Chen, K.W.; Chen, K.Z. Non-contact measurement of complex permittivity and thickness by using planar resonators. IEEE Trans. Microw. Theory Tech. 2016, 64, 247–257. [CrossRef]
Wang, C.; Ali, L.; Meng, F.; Adhikari, K.K.; Zhou, Z.L.; Wei, Y.; Zou, D.Q.; Yu, H. High accuracy complex permittivity characterization of solid materials using parallel interdigital capacitor-based planar microwave sensor. IEEE Sens. J. 2020, 21, 6083–6093. [CrossRef]
Keat, G.O.; Craig, A.G. A resonant printed-circuit sensor for remote query monitoring of environmental parameters. Smart Mater. Struct. 2000, 9, 421–428.
Nurage, N.; Su, K. Perovskite ferroelectric nanomaterials. Nanoscale 2013, 5, 8752–8780. [CrossRef] [PubMed]
Chen, J. On-Chip Spiral Inductor Transformer Design and Modeling for RF Applications. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2006.
Ebrahimi, A.; Scott, J.; Ghorbani, K. Transmission lines terminated with LC resonators for differential permittivity sensing. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1149–1151. [CrossRef]
Ali, L.; Wang, C.; Meng, F.; Adhikari, K.K.; Wei, Y.; Li, J.H.; Song, Z.W.; Zhao, M. Design and optimization of interdigitated microwave sensor for multidimensional sensitive characterization of solid materials. IEEE Sens. J. 2021, 21, 22814–22822. [CrossRef]
Su, L.; Contreras, J.M.; Velez, P.; Martin, F. Configurations of splitter/combiner microstrip sections loaded with stepped impedance resonators (SIRs) for sensing applications. Sensors 2016, 16, 2195. [CrossRef]
Ebrahimi, A.; Beziuk, G.; Scott, J.; Ghorbani, K. Microwave differential frequency splitting sensor using magnetic-LC resonators. Sensors 2020, 20, 1066. [CrossRef] [PubMed]
Ali, L.; Wang, C.; Meng, F.; Wei, Y.; Tan, X.; Adhikari, K.K.; Zhao, M. Simultaneous measurement of thickness and permittivity using microwave resonator-based planar sensor. Int. J. RF Microw. Comput. Eng. 2021, 31, e22794. [CrossRef]