Article (Périodiques scientifiques)
Learning-Based Resource Allocation for Backscatter-Aided Vehicular Networks
KHAN, Wali Ullah; Nguyen, Tu N.; Jameel, Furqan et al.
2022In IEEE Transactions on Intelligent Transportation Systems
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Learning-Based_Resource_Allocation_for_Backscatter-Aided_Vehicular_Networks.pdf
Postprint Éditeur (3.31 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Artificial Intelligence; Vehicular network; Resource optimization
Résumé :
[en] Heterogeneous backscatter networks are emerging as a promising solution to address the proliferating coverage and capacity demands of next-generation vehicular networks. However, despite its rapid evolution and significance, the optimization aspect of such networks has been overlooked due to their complexity and scale. Motivated by this discrepancy in the literature, this work sheds light on a novel learning-based optimization framework for heterogeneous backscatter vehicular networks. More specifically, the article presents a resource allocation and user association scheme for large-scale heterogeneous backscatter vehicular networks by considering a collaboration centric spectrum sharing mechanism. In the considered network setup, multiple network service providers (NSPs) own the resources to serve several legacy and backscatter vehicular users in the network. For each NSP, the legacy vehicle user operates under the macro cell, whereas, the backscatter vehicle user operates under small private cells using leased spectrum resources. A joint power allocation, user association, and spectrum sharing problem has been formulated with an objective to maximize the utility of NSPs. In order to overcome challenges of high dimensionality and non-convexity, the problem is divided into two subproblems. Subsequently, a reinforcement learning and a supervised deep learning approach have been used to solve both subproblems in an efficient and effective manner. To evaluate the benefits of the proposed scheme, extensive simulation studies are conducted and a comparison is provided with benchmark techniques. The performance evaluation demonstrates the utility of the presented system architecture and learning-based optimization framework.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
KHAN, Wali Ullah  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Nguyen, Tu N.
Jameel, Furqan
Jamshed, Muhammad Ali
Pervaiz, Haris
Javed, Muhammad Awais
Jantti, Riku
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Learning-Based Resource Allocation for Backscatter-Aided Vehicular Networks
Titre traduit :
[en] Learning-Based Resource Allocation for Backscatter-Aided Vehicular Networks
Date de publication/diffusion :
octobre 2022
Titre du périodique :
IEEE Transactions on Intelligent Transportation Systems
ISSN :
1524-9050
eISSN :
1558-0016
Maison d'édition :
Institute of Electrical and Electronics Engineers, New-York, Etats-Unis - New York
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 25 janvier 2023

Statistiques


Nombre de vues
162 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
54
citations Scopus®
sans auto-citations
40
citations OpenAlex
 
59
citations WoS
 
54

Bibliographie


Publications similaires



Contacter ORBilu