[en] Low-density parity-check (LDPC) codes have become the focal choice for next-generation Internet of things (IoT) networks. This correspondence proposes an efficient decoding algorithm, dual min-sum (DMS), to estimate the first two minima from a set of variable nodes for check-node update (CNU) operation of min-sum (MS) LDPC decoder. The proposed architecture entirely eliminates the large-sized multiplexing system of sorting-based architecture which results in a prominent decrement in hardware complexity and critical delay. Specifically, the DMS architecture eliminates a large number of comparators and multiplexors while keeping the critical delay equal to the most delay-efficient tree-based architecture. Based on experimental results, if the number of inputs is equal to 64, the proposed architecture saves 69%, 68%, and 52% area over the sorting-based, the tree-based, and the low-complexity tree-based architectures, respectively. Furthermore, the simulation results show that the proposed approach provides an excellent error-correction performance in terms of bit error rate (BER) and block error rate (BLER) over an additive white Gaussian noise (AWGN) channel.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Asif, Muhammad
KHAN, Wali Ullah ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Afzal, H. M. Rehman
Nebhen, Jamel
Ullah, Inam
Rehman, Ateeq Ur
K. A. Kaabar, Mohammed
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Reduced-Complexity LDPC Decoding for Next-Generation IoT Networks
Titre traduit :
[en] Reduced-Complexity LDPC Decoding for Next-Generation IoT Networks
Date de publication/diffusion :
septembre 2021
Titre du périodique :
Wireless Communications and Mobile Computing
ISSN :
1530-8669
eISSN :
1530-8677
Maison d'édition :
John Wiley & Sons, Hoboken, Etats-Unis - New Jersey
Khan W. U., Liu J., Jameel F., Sharma V., Jantti R., Han Z., Spectral efficiency optimization for next generation NOMA-enabled IoT networks. IEEE Transactions on Vehicular Technology 2020, 69, 12, 15284, 15297, 10.1109/TVT.2020.3038387
Li X., Wang Q., Liu M., Li J., Peng H., Piran M. J., Li L., Cooperative wireless-powered NOMA relaying for B5G IoT networks with hardware impairments and channel estimation errors. IEEE Internet of Things Journal 2021, 8, 7, 5453, 5467, 10.1109/JIOT.2020.3029754
Khan W. U., Jameel F., Jamshed M. A., Pervaiz H., Khan S., Liu J., Efficient power allocation for NOMA-enabled IoT networks in 6G era. Physical Communication 2020, 39, 10.1016/j.phycom.2020.101043
Junejo A., Kaabar M. K. A., Mohamed S., Future Robust Networks: Current Scenario and Beyond for 6G. IMCC Journal of Science 2021, 1, 67, 81
Li X., Zhao M., Liu Y., Li L., Ding Z., Nallanathan A., Secrecy analysis of ambient backscatter NOMA systems under I/Q imbalance. IEEE Transactions on Vehicular Technology 2020, 69, 10, 12286, 12290, 10.1109/TVT.2020.3006478
Khan W. U., Jameel F., Kumar N., Jantti R., Guizani M., Backscatter-enabled efficient V2X communication with non-orthogonal multiple access. IEEE Transactions on Vehicular Technology 2021, 70, 2, 1724, 1735, 10.1109/TVT.2021.3056220
Li X., Zheng Y., Khan W. U., Zeng M., Li D., Ragesh G. K., Li L., Physical layer security of cognitive ambient backscatter communications for green Internet-of-things. IEEE Transactions on Green Communications and Networking pp. 2021, 5, 3, 1066, 1076, 10.1109/tgcn.2021.3062060
Khan W. U., Li X., Zeng M., Dobre O. A., Backscatter-enabled NOMA for future 6G systems: A new optimization framework under imperfect SIC. IEEE Communications Letters 2021, 25, 5, 1669, 1672, 10.1109/LCOMM.2021.3052936
Attar H. H., Solyman A. A. A., Khosravi M. R., Qi L., Alhihi M., Tavallali P., Bit and packet error rate evaluations for half-cycle stage cooperation on 6G wireless networks. Physical Communication 2020, 44, 101249, 10.1016/j.phycom.2020.101249
Gallager R. G., Low-Density Parity-Check Codes 1963, Cambridge, MA, USA MIT Press 10.7551/mitpress/4347.001.0001
MacKay D. J. C., Neal R. M., Near Shannon limit performance of low density parity check codes. Electronics Letters 1997, 33, 6, 457, 458, 10.1049/el:19970362, 2-s2.0-0031096505
Asif M., Zhou W., Ajmal M., Khan N. A., A construction of high performance quasicyclic LDPC codes: A combinatoric design approach. Wireless Communications and Mobile Computing 2019, 2019, 10, 10.1155/2019/7468792, 2-s2.0-85062320792
Asif M., Zhou W., Yu Q., Li X., Khan N. A., A deterministic construction for jointly designed quasicyclic LDPC coded-relay cooperation. Wireless Communications and Mobile Computing 2019, 2019, 12, 10.1155/2019/5249373, 2-s2.0-85073148484
Asif M., Zhou W., Yu Q., Adnan S., Iqbal M. S., Jointly designed quasi-cyclic LDPC-coded cooperation with diversity combining at receiver. International Journal of Distributed Sensor Networks 2020, 16, 7, 10.1177/1550147720938974
Asif M., Zhou W., Ally J. S., Khan N. A., An algebraic construction of quasi-cyclic LDPC codes based on the conjugates of primitive elements over finite fields. IEEE International Conference on Communication Technology (ICCT) 2018 115, 119
Khan W. U., Imtiaz N., Ullah I., Joint optimization ofNOMA-enabled backscatter communications for beyond5G IoTnetworks. Internet Technology Letters 2021, 4, 2, 10.1002/itl2.265
Jameel F., Time slot management in backscatter systems for large-scale IoT networks. Wireless-Powered Backscatter Communications for Internet of Things 2021 Springer, Cham 51, 65
Khan W. U., NOMA-enabled wireless powered backscatter communications for secure and green IoT networks. Wireless-Powered Backscatter Communications for Internet of Things 2021 Springer, Cham 103, 131
Jameel F., Multi-tone carrier backscatter communications for massive IoT networks. Wireless-Powered Backscatter Communications for Internet of Things 2021 Springer, Cham 39, 50
Oudjani B., Tebbikh H., Doghmane N., Modification of extrinsic information for parallel concatenated Gallager/convolutional code to improve performance/complexity trade-offs. AEU-International Journal of Electronics and Communications 2018, 83, 1, 484, 491, 10.1016/j.aeue.2017.10.033, 2-s2.0-85036610995
Ar-Reyouchi E. M., Chatei Y., Ghoumid K., Hammouti M., Hajji B., Efficient coding techniques algorithm for cluster-heads communication in wireless sensor networks. AEU-International Journal of Electronics and Communications 2017, 82, 12, 294, 304, 10.1016/j.aeue.2017.08.047, 2-s2.0-85034861881
Liu J., De-Lamare R. C., Rate-compatible LDPC codes with short block lengths based on puncturing and extension techniques. AEU-International Journal of Electronics and Communications 2015, 69, 11, 1582, 1589, 10.1016/j.aeue.2015.07.008, 2-s2.0-84941730983
Kadi A., Najah S., Mrabti M., An exponential factor appearance probability belief propagation algorithm for regular and irregular LDPC codes. AEU-International Journal of Electronics and Communications 2015, 69, 6, 933, 936, 10.1016/j.aeue.2015.02.009, 2-s2.0-84933676886
Zhang Z., Anantharam V., Wainwright M. J., Nikolic B., An efficient 10GBASE-T ethernet LDPC decoder design with low error floors. IEEE Journal of Solid-State Circuits 2010, 45, 4, 843, 855, 10.1109/JSSC.2010.2042255, 2-s2.0-77950190435
Jin J., Tsui C. Y., An energy efficient layered decoding architecture for LDPC decoder. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2010, 18, 8, 1185, 1195, 10.1109/TVLSI.2009.2021479, 2-s2.0-77955171704
Tran T. H., Nagao Y., Ochi H., Kurosaki M., ASIC design of 7.7 Gbps multi-mode LDPC decoder for IEEE 802.11ac. Int. Symp., Commun. and Inf. Technologies (ISCIT) 2014 Incheon 259, 263
Ajaz S., Lee H., Multi-Gb/s multi-mode LDPC decoder architecture for IEEE 802.11ad standard. Asia Pacific Conf., Circuits and Systems (APCCAS) 2014 Ishigaki, Japan 153, 156
Chen J., Dholakia A., Eleftheriou E., Fossorier M. P. C., Hu X. Y., Reduced-complexity decoding of LDPC codes. IEEE Transactions on Communications 2005, 53, 8, 1288, 1299, 10.1109/TCOMM.2005.852852, 2-s2.0-24644490730
Angarita F., Valls J., Almenar V., Torres V., Reduced-complexity min-sum algorithm for decoding LDPC codes with low error-floor. IEEE transactions on circuits and systems I 2014, 61, 7, 2150, 2158
Chen J., Fossorier M., Density evolution for two improved BP-based decoding algorithms of LDPC codes. IEEE Communications Letters 2002, 6, 5, 208, 210, 10.1109/4234.1001666, 2-s2.0-0036576454
Darabiha A., Carusone A., Kschischang F., A bit-serial approximate min-sum LDPC decoder and FPGA implementation. in Proc. IEEE Int. Symp. Circuits Syst 2006 149, 152
Wang Q., Shimizu K., Ikenaga T., Goto S., A power-saved 1Gbps irregular LDPC decoder based on simplified min-sum algorithm. in Proc. Int. Symp. VLSI Des., Autom. Test 2007 1, 4
Zhang C., Wang Z., Sha J., Li L., Lin J., Flexible LDPC decoder design for multigigabit-per-second applications. IEEE transactions on circuits and systems I 2010, 57, 1, 116, 124, 10.1109/TCSI.2009.2018915
Khan W. U., Yu Z., Yu S., Sidhu G. A. S., Liu J., Efficient power allocation in downlink multi-cell multi-user NOMA networks. IET Communications 2018, 13, 4, 396, 402
Khan W. U., Jameel F., Ristaniemi T., Khan S., Sidhu G. A. S., Liu J., Joint spectral and energy efficiency optimization for downlink NOMA networks. IEEE Transactions on Cognitive Communications and Networking 2019, 6, 2, 645, 656, 10.1109/tccn.2019.2945802, 2-s2.0-85073156469
Jameel F., Towards intelligent IoT networks: Reinforcement learning for reliable backscatter communications. 2019 IEEE Globecom Workshops (GC Wkshps) 2019 Waikoloa, HI, USA
Khan W. U., Jameel F., Sidhu G. A. S., Ahmed M., Li X., Jantti R., Multiobjective optimization of uplink NOMA-enabled vehicle-to-infrastructure communication. IEEE Access 2020, 8, 84467, 84478, 10.1109/ACCESS.2020.2991197
Jameel F., Zeb S., Khan W. U., Hassan S. A., Chang Z., Liu J., NOMA-enabled backscatter communications: Toward battery-free IoT networks. IEEE Internet of Things Magazine 2020, 3, 4, 95, 101, 10.1109/IOTM.0001.2000055
Khan W. U., Secure backscatter communications in multi-cell NOMA networks: Enabling link security for massive IoT networks. IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) 2020 Toronto, ON, Canada
Jameel F., Efficient power-splitting and resource allocation for cellular V2X communications. IEEE Transactions on Intelligent Transportation Systems 2020
Jameel F., Reinforcement learning for scalable and reliable power allocation in SDN-based backscatter heterogeneous network. IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) 2020 Toronto, ON, Canada
Nawaz M., Khan W. U., Ali Z., Ihsan A., Waqar O., Sidhu G. A. S., Resource optimization framework for physical layer security of dual-hop multi-carrier decode and forward relay networks. IEEE Open Journal of Antennas and Propagation 2021, 2, 634, 645, 10.1109/OJAP.2021.3078233
Yu S., Khan W. U., Zhang X., Liu J., Optimal power allocation for NOMA-enabled D2D communication with imperfect SIC decoding. Physical Communication 2021, 46, 101296, 10.1016/j.phycom.2021.101296
Bakht K., Jameel F., Ali Z., Khan W. U., Khan I., Sidhu G. A. S., Lee J. W., Power allocation and user assignment scheme for beyond 5G heterogeneous networks. Wireless Communications and Mobile Computing 2019, 2019, 11, 10.1155/2019/2472783
Qian X., Zhixiang C., Xiao P., Satoshi G., A sorting-based architecture of finding the first two minimum values for LDPC decoding. IEEE, Int. Coll. on Signal Processing and its Applicattions 2001 95, 98
Xie Q., Chen Z., Peng X., Goto S., A sorting based architecture of finding the first two minimum values for LDPC decoding. in Proc. IEEE CSPA 2011 95, 98
Chen-Long W., Ming-Der S., Shin-Yo L., Algorithms of finding the first two minimum values and their hardware implementation. IEEE transactions on circuits and systems I 2008, 55, 11, 3430, 3437, 10.1109/TCSI.2008.924892, 2-s2.0-58049213365
Lee Y., Kim B., Jun J., In-Cheol P., Low-complexity tree architecture for finding the first two minima. IEEE Transactions on Circuits and Systems II, Express Briefs 2015, 62, 1, 61, 64, 10.1109/TCSII.2014.2362663, 2-s2.0-84920829049
Tsatsaragkos I., Paliouras V., Approximate algorithms for identifying minima on min-sum LDPC decoders and their hardware implementation. IEEE Transactions on Circuits and Systems II, Express Briefs 2015, 62, 8, 766, 770, 10.1109/TCSII.2015.2433451, 2-s2.0-84938322181