Allen, M., Antwi-Agyei, P., Aragon-Durand, F., Babiker, M., Bertoldi, P., Bind, M., Zickfeld, K., Technical Summary: global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways. The Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 2019 The Intergovernmental Panel on Climate Change (IPCC).
USGCRP. R, D., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., (eds.) Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II [Reidmiller, 2018, U.S. Global Change Research Program, Washington, DC, USA, 470, 10.7930/NCA4.2018.
UN. Paris agreement. Report of the Conference of the Parties to the United Nations Framework Convention on Climate Change, 2015, 21st Session, Paris 2015.
UNEP. Emissions Gap Report 2019., 2020, United Nations Environment Programme 978-92-807-3812-4.
Keith, D.W., Geoengineering the climate: history and prospect. Annu. Rev. Energy Environ. 25:1 (2000), 245–284.
McInnes, C.R., Space-based geoengineering: challenges and requirements. Proc. IME C J. Mech. Eng. Sci. 224:3 (2010), 571–580.
Irvine, P., Kravitz, B., Lawrence, M., Muri, H., An overview of the Earth system science of solar geoengineering. Wiley Interdisciplinary Reviews: Clim. Change 7:6 (2016), 815–833 2016.
Pearson, J., Oldson, J., Levin, E., Earth rings for planetary environment control. Acta Astronaut. 58:1 (2006), 44–57.
Struck, C., The feasibility of shading the greenhouse with dust clouds at the stable lunar Lagrange points. J. Br. Interplanet. Soc. (JBIS) 60 (2007), 82–89.
Fuglesang, C., de Herreros Miciano, M.G., Realistic sunshade system at L1 for global temperature control. Acta Astronaut., 2021.
Bala, G., Caldeira, K., Geoengineering Earth's radiation balance to mitigate CO2‐induced climate change. Geophys. Res. Lett. 27:14 (2000), 2141–2144.
Lunt, D.J., Ridgwell, A., Valdes, P.J., Seale, A., Sunshade World: a fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys. Res. Lett., 35(12), 2008.
NOAA. National Centers for Environmental Information, State of the Climate: Global Climate Report for September 2021., 2021 retrieved on November 18, 2021 from https://www.ncdc.noaa.gov/sotc/global/202109.
Govindasamy, B., Caldeira, K., Geoengineering Earth's radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett. 27 (2000), 2141–2144.
Early, J.T., The space based solar shield to offset greenhouse effect. J. Br. Interplanet. Soc. (JBIS) 42 (1989), 567–569.
McInnes, C.R., Minimum mass solar shield for terrestrial climate control. J. Br. Interplanet. Soc. (JBIS) 55 (2002), 307–311 2002.
McInnes, C.R., Planetary macro-engineering using orbiting solar reflectors. Macro-engineering: a Challenge for the Future, 2006, Springer, Berlin, 215–250.
Angel, R., Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proc. National Acad. of Sciences USA 103:46 (2006), 17184–17189.
Fest, E., Basic Radiometry for Stray Light Analysis (Chapter 2), from Stray Light Analysis and Control. 2013, Spie Press, 10.1117/3.1000980.ch2.
Tsymbal, E., Physics 927 Section 13: Optical Properties of Solids. 2018, University of Nebraska–Lincoln.
Xi, J.Q., Schubert, M.F., Kim, J.K., Schubert, E.F., Chen, M., Lin, S.Y., Liu, W., Smart, J.A., Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics(1), 2007, 10.1038/nphoton.2007.26.
Li, K., Li, M., Xu, C., Su, Z., Chen, J., Zou, F., Zou, C., Xu, S., Li, G., A TiO2 nanotubes film with excellent antireflective and near-perfect self cleaning performances. J. Mater. Sci. Technol. 88 (2021), 11–20.
Saint-André, S., Rodríguez, D., Perillo, P., Barrera, M., TiO2 nanotubes antireflection coating design for GaAs solar cells. Sol. Energy Mater. Sol. Cell., 230, 2021, 111201.
Xi, J.Q., Kim, J.K., Schubert, E.F., Ye, D., Lu, T.M., Liu, S.Y., Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods. Opt Lett., 31(5), 2006.
Jenkins, C.H., (eds.) Progress in Astronautics and Aeronautics: Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications, vol. 191, 2001, Aiaa.
Garner, C., Diedrich, B., Leipold, M., A summary of solar sail technology developments and. Proposed Demonstration Missions, 1999 AIAA-99-2697, presented at 35th AIAA Joint Propulsion Conference.
Hilficker, J., Stadermann, M., Sun, J., Tiwald, T., Hale, J., Miller, P., Aracne-Ruddle, C., Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry. Appl. Surf. Sci. 421:B (2017), 508–512, 10.1016/j.apsusc.2016.08.131.
Stadermann, M., Baxamusa, S.H., Aracne-Ruddle, C., Chea, M., Li, S., Youngblood, K., Suratwala, T., Fabrication of large-area free-standing ultrathin polymer films. JoVE(100), 2015.
Burton, R., Coverstone, V., Hargens-Rysanek, J., Ertmer, K., Botter, T., Benavides, G., Cardin, J., Ultrasail-ultra-lightweight solar sail concept. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005, 4117.
Seefeldt, P., Grundmann, J.T., Hillebrandt, M., Zander, M., Performance analysis and mission applications of a new solar sail concept based on crossed booms with tip-deployed membranes. Adv. Space Res. 67:9 (2021), 2736–2745.
Kosugi, T., Role of sunshades in space as a climate control option. Acta Astronaut. 67:1–2 (2010), 241–253.
Nasa, S., Nasa Systems Engineering Handbook. 2007, National Aeronautics and Space Administration NASA/SP-2007-6105 Rev1.
Gong, S., Macdonald, M., Review on solar sail technology. Astrodynamics 3:2 (2019), 93–125 2019.
Karthick, R., Chen, F., Free-standing graphene paper for energy application: progress and future scenarios. Carbon 150 (2019), 292–310.
Seifritz, W., Mirrors to halt global warming?. Nature, 340(6235), 1989, 603.
Misriyani, Kunarti, E.S., A review on TiO2 nanotubes based free-standing membrane: synthesis mechanism and structure modification. Int. J. Appl. Chem. 13:4 (2017), 845–854.
Peng, X., Jin, J., Ericsson, E.M., Ichinose, I., General method for ultra-thin free-standing films of nanotubes composite materials. J. Am. Chem. Soc. 127:27 (2007), 8625–8633.
Spencer, David A., Les johnson, and alexandra C. Long. "Solar sailing technology challenges. Aero. Sci. Technol., 93, 2019, 105276.
Luo, T., Xu, M., Qu, Q., Design concept for a solar sail with individually controllable elements. J. Spacecraft Rockets 54:6 (2017), 1390–1398.
Fernandez, J.M., Geoff, R., Stohlman, O.R., Younger, C.J., Dean, G.D., Warren, J.E., Kang, J.H., Bryant, R.G., Wilkie, K.W., An advanced composites-based solar sail system for interplanetary small satellite missions. 2018 AIAA Spacecraft Structures Conference, 2018, 1437.
Wu, R., Roberts, P.C., Soutis, C., Diver, C., Heliogyro solar sail with self-regulated centrifugal deployment enabled by an origami-inspired morphing reflector. Acta Astronaut. 152 (2018), 242–253.
Burton, R., Laystrom-Woodard, J., Benavides, G., Carroll, D., Coverstone, V., Swenson, G., Pukniel, A., Chosh, A., Moctezuma, A., Initial development of the cubesail/ultrasail spacecraft. Joint Army Navy NASA Air Force (JANNAF) Spacecraft Propulsion Subcommittee Meeting, 2010.
CubeSail, CubeSail mission update. Retrieved from https://www.cubesail.us/news, 2020 Accessed on. (Accessed 7 November 2022)
Nasa, S.B.I.R., I-sail: 2500-square-meter solar sail prototype demonstrator. NASA SBIR 2017 Solicitation. 19 April 2017, 2017 Retrieved from: https://sbir.nasa.gov/SBIR/abstracts/17/sbir/phase1/SBIR-17-1-S3.02-9845.html.
Shepherd, J.G., Geoengineering the Climate: Science, Governance and Uncertainty. 2009, Royal Society.
American Elements, Ultra Thin Aluminum Nanoscale Foil. American Elements the Advanced Materials Manufacturer. 2022 Retrieved from https://www.americanelements.com/ultra-thin-aluminum-nanoscale-foil-7429-90-5 Accessed on. (Accessed 7 November 2022)
Yost, B., Weston, S., Benavides, G., Krage, F., Hines, J., Mauro, S., Etchey, S., O'Neill, K., Braun, B., State-of-the-Art small spacecraft technology. Small Spacecraft Systems Virtual Institute. NASA Ames Research Center, Moffett Field, 2021 (California).
Nygren, E., Hypothetical Spacecraft and Interstellar Travel. 2015, Lulu.com -10 : 1312955929.
Larson, E.J., Portmann, R.W., Rosenlof, K.H., Fahey, D.W., Daniel, J.S., Ross, M.N., Global atmospheric response to emissions from a proposed reusable space launch system. Earth's Future 5:1 (2017), 37–48.
Hein, A.M., Saidani, M., Tollu, H., Exploring Potential Environmental Benefits of Asteroid Mining. 2018 arXiv preprint arXiv:1810.04749.
Federal Aviation Administration (Faa), National aeronautics and space administration, national park service, U.S. Coast guard, U.S. Army corps of engineers, and U.S. Fish and wildlife service, cooperating agencies. Programmatic Environmental Assessment for the SpaceX Starship/Super Heavy Launch Vehicle Program at the SpaceX Boca Chica Launch Site in Cameron County, 2019 (Texas).