Abstract :
[en] To meet the demands of massive connections, diverse quality of services (QoS), ultra-reliable and low latency in the future sixth-generation (6G) Internet-of-vehicle (IoV) communications, we propose non-orthogonal multiple access (NOMA)-enabled small-cell IoV network (SVNet). We aim to investigate the trade-off between system capacity and energy efficiency through a joint power optimization framework. In particular, we formulate a nonlinear multi-objective optimization problem under imperfect successive interference cancellation (SIC) detecting. Thus, the objective is to simultaneously maximize the sum-capacity and minimize the total transmit power of NOMA-enabled SVNet subject to individual IoV QoS, maximum transmit power and efficient signal detecting. To solve the nonlinear problem, we first exploit a weighted-sum method to handle the multi-objective optimization and then adopt a new iterative Sequential Quadratic Programming (SQP)-based approach to obtain the optimal solution. The proposed optimization framework is compared with Karush-Kuhn-Tucker (KKT)-based NOMA framework, average power NOMA framework, and conventional OMA framework. Monte Carlo simulation results unveil the validness of our derivations. The presented results also show the superiority of the proposed optimization framework over other benchmark frameworks in terms of system sum-capacity and total energy efficiency.
Scopus citations®
without self-citations
18