Article (Périodiques scientifiques)
MARL based resource allocation scheme leveraging vehicular cloudlet in automotive-industry 5.0
Ahmed, Manzoor; Liu, Jinshi; Mirza, Muhammad Ayzed et al.
2022In Journal of King Saud University - Computer and Information Sciences
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S1319157822003627-main.pdf
Postprint Éditeur (1.95 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Multi-agent reinforcement learning; Vehicular cloudlet; Industry 5.0
Résumé :
[en] Automotive-Industry 5.0 will use Beyond Fifth-Generation (B5G) communications to provide robust, abundant computation resources and energy-efficient data sharing among various Intelligent Transportation System (ITS) entities. Based on the vehicle communication network, the Internet of Vehicles (IoV) is created, where vehicles’ resources, including processing, storage, sensing, and communication units, can be leveraged to construct Vehicular Cloudlet (VC) to realize resource sharing. As Connected and Autonomous Vehicles (CAV) onboard computing is becoming more potent, VC resources (comprising stationary and moving vehicles’ idle resources) seems a promising solution to tackle the incessant computing requirements of vehicles. Furthermore, such spare computing resources can significantly reduce task requests’ delay and transmission costs. In order to maximize the utility of task requests in the system under the maximum time constraint, this paper proposes a Secondary Resource Allocation (SRA) mechanism based on a dual time scale. The request service process is regarded as M/M/1 queuing model and considers each task request in the same time slot as an agent. A Partially Observable Markov Decision Process (POMDP) is constructed and combined with the Multi-Agent Reinforcement Learning (MARL) algorithm known as QMix, which exploits the overall vehicle state and queue state to reach effective computing resource allocation decisions. There are two main performance metrics: the system’s total utility and task completion rate. Simulation results reveal that the task completion rate is increased by 13%. Furthermore, compared with the deep deterministic policy optimization method, our proposed algorithm can improve the overall utility value by 70% and the task completion rate by 6%.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Ahmed, Manzoor
Liu, Jinshi
Mirza, Muhammad Ayzed
KHAN, Wali Ullah  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Al-wesabi, Fahd N.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
MARL based resource allocation scheme leveraging vehicular cloudlet in automotive-industry 5.0
Titre traduit :
[en] MARL based resource allocation scheme leveraging vehicular cloudlet in automotive-industry 5.0
Date de publication/diffusion :
19 octobre 2022
Titre du périodique :
Journal of King Saud University - Computer and Information Sciences
ISSN :
1319-1578
eISSN :
2213-1248
Maison d'édition :
Elsevier
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 25 janvier 2023

Statistiques


Nombre de vues
130 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
10
citations Scopus®
sans auto-citations
8
OpenCitations
 
0
citations OpenAlex
 
13

Bibliographie


Publications similaires



Contacter ORBilu