Solidification crack; Laser welding; Grain structure; Chemical compounds; Brittle intermetallic compounds; Suppression of cracks
Résumé :
[en] Laser beam welding of miscellaneous material combinations is an effective joining technology useful for diverse industrial applications because it can provide high speed, flexibility, and precision. However, welding defects like solidification cracking are some of the challenges in the joining process. The past decade has seen an extended effort to deal with this issue in many studies. However, there remains to be more comprehensive research regarding preventive procedures for solidification cracking by changing the grain structure. Following a thorough understanding of the solidification crack mechanism theories, we reviewed recent research on the critical role of metallurgical factors in the solidification cracks during laser welding. It considers the influence of the grain structure, intermetallic compounds, and laser welding parameters to propose preventive procedures to suppress the solidification cracks. Recent achievements show grain refiners, laser beam oscillation, ultrasonic vibration, and implementation of double laser sources are the main strategies that suppress or minimize solidification cracks. Furthermore, in laser beam welding of dissimilar materials, like steel-hard metal and copper-aluminum, brittle intermetallic compounds are recognized as one of the main reasons for the solidification crack susceptible increment. Recent approaches to overcome the formation or reduce the number of intermetallic compounds through various laser parameters and setups are discussed.
Disciplines :
Science des matériaux & ingénierie
Auteur, co-auteur :
NOROUZIAN, Mohammadhossein ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (Digital Infrastructure)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A review: Suppression of the solidification cracks in the laser welding process by controlling the grain structure and chemical compositions
Date de publication/diffusion :
01 juin 2023
Titre du périodique :
Journal of Advanced Joining Processes
Volume/Tome :
7
Peer reviewed :
Peer reviewed
Intitulé du projet de recherche :
Developing and Online Monitoring of Laser Welding Between Hard metal and Steel Based on Artificial Neural Network Feedback
Agarwal, G., et al. Study of solidification cracking susceptibility during laser welding in an advanced high strength automotive steel. Metals (Basel), 8(9), 2018, 10.3390/met8090673 Available at.
Agarwal, G., et al. Evaluation of solidification cracking susceptibility during laser welding in advanced high strength automotive steels. Mater. Des., 183, 2019, 10.1016/j.matdes.2019.108104 Available at.
Amne Elahi, M., et al. Failure mechanism analysis based on laser-based surface treatments for aluminum-polyamide laser joining. J. Mater. Proces. Technol., 298, 2021, 10.1016/j.jmatprotec.2021.117318 Available at.
Amne Elahi, M., Plapper, P, Dissimilar laser micro-welding of nickel wire to CuSn6 bronze terminal. Trans. Indian Inst. Metals 72:1 (2019), 27–34, 10.1007/s12666-018-1457-y Available at.
Apblett WR, P.W., Factors which influence weld hot cracking. Welding J. (N.Y.) 33 (1954), 83–90 Available at https://www.osti.gov/biblio/4389407.
Azimzadegan, T., Akbari Mousavi, S.A.A., Investigation of the occurrence of hot cracking in pulsed Nd-YAG laser welding of Hastelloy-X by numerical and microstructure studies. J. Manuf. Process. 44 (2019), 226–240, 10.1016/j.jmapro.2019.06.005 Available at.
Barbatti. C. et al. (2003) Determination of phases and residual stresses in laser beam welded joints of cemented carbide to steel.
Borland, J.C., Generalized theory of super-solidus cracking in welds (and castings). Br. Weld. J, 1960, 508–512.
Braunovic, M., Reliability of power connections. J. Zhejiang Univ. Sci. 8:3 (2007), 343–356, 10.1631/jzus.2007.A0343 Available at.
Campbell, J., Castings. Available at, 2nd Edition, 2003, 10.1016/B978-075064790-8/50016-4.
Chen, G., et al. Electron beam welding-brazing of hard alloy to steel with Ni-Fe intermediate. Int. J. Refractory Metals Hard Mater., 2013, 58–63, 10.1016/j.ijrmhm.2013.03.002 Available at.
Cicalǎ, E., et al. Hot cracking in Al-Mg-Si alloy laser welding - operating parameters and their effects. Mater. Sci. Eng. A 395:1–2 (2005), 1–9, 10.1016/j.msea.2004.11.026 Available at.
Costa, A., Quintino, L., Miranda, R.M., Microstructural aspects of laser dissimilar welds of hard metals to steels. J. Laser Appl. 16:4 (2004), 206–211, 10.2351/1.1809635 Available at.
Costa, A.P., Quintino, L., Greitmann, M., Laser beam welding hard metals to steel. J. Mater. Process. Technol. 141:2 (2003), 163–173, 10.1016/S0924-0136(02)00954-8 Available at.
Cross, C.E., On the origin of weld solidification cracking. Hot Cracking Phenomena in Welds, 2005, Springer-Verlag, Berlin/Heidelberg, 3–18, 10.1007/3-540-27460-X_1 Available at.
Dimatteo, V., et al. Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing. Opt. Laser Technol., 145, 2022, 10.1016/j.optlastec.2021.107495 Available at.
Drezet, J.-.M. et al. (2008) Crack-free aluminium alloy welds using a twin laser process.
Fetzer, F., et al. Fine-tuned remote laser welding of aluminum to copper with local beam oscillation. Physics Procedia, 2016, Elsevier B.V., 455–462, 10.1016/j.phpro.2016.08.047 Available at.
Gao, Z., et al. Formation mechanism and control of solidification cracking in laser-welded joints of steel/copper dissimilar metals. Metals (Basel), 12(7), 2022, 1147, 10.3390/met12071147 Available at.
Hagenlocher, C., et al. Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum. Mater. Des. 160 (2018), 1178–1185, 10.1016/j.matdes.2018.11.009 Available at.
Hagenlocher, C., et al. Reduction of the hot cracking susceptibility of laser beam welds in AlMgSi alloys by increasing the number of grain boundaries. Sci. Technol. Weld. Join. 24:4 (2019), 313–319, 10.1080/13621718.2018.1534775 Available at.
Han, C., et al. Multiphase-field simulation of grain coalescence behavior and its effects on solidification cracking susceptibility during welding of Al-Cu alloys. Mater. Des., 211, 2021, 10.1016/j.matdes.2021.110146 Available at.
Hekmatjou, H., Naffakh-Moosavy, H., Hot cracking in pulsed Nd:YAG laser welding of AA5456. Opt. Laser Technol. 103 (2018), 22–32, 10.1016/j.optlastec.2018.01.020 Available at.
Hosseini, S.A., et al. Elimination of hot cracking in the electron beam welding of AA2024-T351 by controlling the welding speed and heat input. J. Manuf. Process. 46 (2019), 147–158, 10.1016/j.jmapro.2019.09.003 Available at.
Huitron, R.M.P., Vuorinen, E., Hot cracking of structural steel during laser welding. IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing, 2017, 10.1088/1757-899X/258/1/012005 Available at.
Hunt, J.D., Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Eng. R. Rep. 65:1 (1984), 75–83, 10.1016/0025-5416(84)90201-5 Available at.
Jonathan Dantzig, M.R. (2007) Solidification: 2nd Edition, Revised & Expanded. Available at: https://books.google.lu/books?id=k1Q-DgAAQBAJ.
Kadoi, K., et al. The effect of welding conditions on solidification cracking susceptibility of type 310S stainless steel during laser welding using an in-situ observation technique. Weld. World 57:3 (2013), 383–390, 10.1007/s40194-013-0023-9 Available at.
Kang, M., Han, H.N., Kim, C., Microstructure and solidification crack susceptibility of Al 6014 molten alloy subjected to a spatially oscillated laser beam. Materials (Basel), 11(4), 2018, 10.3390/MA11040648 Available at.
Katayama, S., Defect formation mechanisms and preventive procedures in laser welding. Handbook of Laser Welding Technologies, 2013, Elsevier Inc., 332–373, 10.1533/9780857098771.2.332 Available at.
Katayama, S., Fundamentals and Details of Laser Welding. 2020, Springer Singapore, Singapore, 10.1007/978-981-15-7933-2 Topics in Mining, Metallurgy and Materials EngineeringAvailable at.
Katayama. S. (2013) ‘Handbook of Laser Welding Technologies’. Available at: https://www.sciencedirect.com/book/9780857092649/handbook-of-laser-welding-technologies.
Kim, J.S., Watanabe, T., Yoshida, Y., Ultrasonic vibration aided laser welding of Al alloys: improvement of laser welding-quality. J. Laser Appl. 7:1 (1995), 38–46, 10.2351/1.4745370 Available at.
Kou, S., Welding Metallurgy. 2002, John Wiley & Sons, Inc, Hoboken, NJ, USA, 10.1002/0471434027 Available at.
Kou, S., A criterion for cracking during solidification. Acta Mater. 88 (2015), 366–374, 10.1016/j.actamat.2015.01.034 Available at.
Kou, S., Solidification cracking susceptibility associated with a teardrop-shaped weld pool. Sci. Technol. Weld. Joining 26:4 (2021), 341–347, 10.1080/13621718.2021.1910179 Available at.
Kumar, S., et al. Application of ultrasonic vibrations in welding and metal processing: a status review. J. Manuf. Process., 2017, 295–322, 10.1016/j.jmapro.2017.02.027 Available at.
Lei, Z., et al. Melt flow and grain refining in ultrasonic vibration assisted laser welding process of AZ31B magnesium alloy. Opt. Laser Technol. 108 (2018), 409–417, 10.1016/j.optlastec.2018.07.015 Available at.
Li, J., et al. Melt flow and microstructural characteristics in beam oscillation superimposed laser welding of 304 stainless steel. J. Manuf. Process. 50 (2020), 629–637, 10.1016/j.jmapro.2019.12.053 Available at.
Li, S., Mi, G., Wang, C., A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: morphology, microstructure and mechanical properties. J. Manuf. Process. 53 (2020), 12–20, 10.1016/j.jmapro.2020.01.018 Available at.
Lippold, J.C., Welding Metallurgy and Weldability. 2015, John Wiley & Sons, Inc. Available at, Hoboken, NJ, 10.1002/9781118960332.
Liu, J., Kou, S., Effect of diffusion on susceptibility to cracking during solidification. Acta Mater. 100 (2015), 359–368, 10.1016/j.actamat.2015.08.064 Available at.
Liu, Z., et al. Microstructure evolution and mechanical properties of SUS301L stainless steel sheet welded joint in ultrasonic vibration assisted laser welding. Opt. Laser Technol., 153, 2022, 10.1016/j.optlastec.2022.108193 Available at.
Mai, T.A., Spowage, A.C., Characterisation of dissimilar joints in laser welding of steel-kovar, copper-steel and copper-aluminium. Mater. Sci. Eng. A 374:1–2 (2004), 224–233, 10.1016/j.msea.2004.02.025 Available at.
Manitsas, D., Andersson, J., Hot cracking mechanisms in welding metallurgy: a review of theoretical approaches. MATEC Web of Conferences, 2018, EDP Sciences, 10.1051/matecconf/201818803018 Available at.
Mathivanan, K. and Plapper, P. (2019a) Laser overlap joining from copper to aluminum and analysis of failure zone. Available at: http://hdl.handle.net/10993/40126.
Mathivanan, K., Plapper, P., Laser welding of dissimilar copper and aluminum sheets by shaping the laser pulses. Procedia Manufacturing, 2019, Elsevier B.V., 154–162, 10.1016/j.promfg.2019.08.021 Available at.
Matsuda, Fukuhisa, Nakagawa, Hiroji, Sorada, Kazuhiko, Dynamic observation of solidification and solidification cracking during welding with optical microscope (I) : solidification front and behavior of cracking(Materials, metallurgy \& weldability). Trans. JWRI 11 (1982), 67–77.
McCartney, D.G., Grain refining of aluminium and its alloys using inoculants. Int. Mater. Rev. 34:1 (1989), 247–260, 10.1179/imr.1989.34.1.247 Available at.
Milewski, J.O., Lewis, G.K. and Wittig, J.E. (1993) Microstructural evaluation of low and high duty cycle Nd:YAG laser beam welds in 2024-T3 aluminum changes in weld microstructure due to an increased duty cycle produced acceptable laser weld morphology in a hot-tear-sensitive alloy. Available at: https://www.osti.gov/biblio/6354358.
Mousavi, M.G., Cross, C.E., Grong, Ø., Effect of scandium and titanium–boron on grain refinement and hot cracking of aluminium alloy 7108. Sci. Technol. Weld. Joining 4:6 (1999), 381–388, 10.1179/136217199101538030 Available at.
Murty, B.S., Kori, S.A., Chakraborty, M., Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47:1 (2002), 3–29, 10.1179/095066001225001049 Available at.
Nguyen, Q., et al. Experimental investigation of temperature field and fusion zone microstructure in dissimilar pulsed laser welding of austenitic stainless steel and copper. J. Manuf. Process. 56 (2020), 206–215, 10.1016/j.jmapro.2020.03.037 Available at.
P.rokhorov, N.N., P.rokhorov, N.N., Fundamentals of the theory for technological strength of metals while crystallising during welding. Trans. Japan Weld. Soc. 2 (1971), 205–213.
Palanivel, R., et al. Effect of Nd:YAG laser welding on microstructure and mechanical properties of Incoloy alloy 800. Opt. Laser Technol., 2021, 140, 10.1016/j.optlastec.2021.107039 Available at.
Ponweiser, N., Lengauer, C.L., Richter, K.W., Re-investigation of phase equilibria in the system Al-Cu and structural analysis of the high-temperature phase η1-Al 1-δCu. Intermetallics 19:11 (2011), 1737–1746, 10.1016/j.intermet.2011.07.007 Available at.
Pumphrey, W., A consideration of the nature of brittleness at temperatures above the solidus in castings and welds in aluminium alloys. J. Inst. Metals, 1948, 230–254.
Radel, T., Mechanical manipulation of solidification during laser beam welding of aluminum. Weld. World 62:1 (2018), 29–38, 10.1007/s40194-017-0530-1 Available at.
Schaefer, M. et al. (2015) Analysing hot crack formation in laser welding of tempered steel. Available at: https://www.wlt.de/lim/Proceedings2015/Stick/PDF/Contribution148_final.pdf.
Schaefer, M., et al. Hot cracking during laser welding of steel: influence of the welding parameters and prevention of cracks. High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VI, 2017, SPIE, 100970E, 10.1117/12.2254424 pAvailable at.
Schiry, M. and Plapper, P. (2019) Elucidation of influencing parameters of the laser butt welding process of dissimilar steel to tungsten alloy sheets. Available at: http://hdl.handle.net/10993/39387.
Schmalen, P., et al. Composition and phases in laser welded Al-Cu joints by synchrotron x-ray microdiffraction. Procedia CIRP, 2018, Elsevier B.V., 27–32, 10.1016/j.procir.2018.08.006 Available at.
Schmalen, P., Plapper, P., Evaluation of laser braze-welded dissimilar Al-Cu joints. Physics Procedia, 2016, Elsevier B.V., 506–514, 10.1016/j.phpro.2016.08.052 Available at.
Shao, J., et al. Grain size evolution under different cooling rate in laser additive manufacturing of superalloy. Opt. Laser Technol., 119, 2019, 10.1016/j.optlastec.2019.105662 Available at.
Shinozaki, K., et al. Effect of grain size on solidification cracking susceptibility of type 347 stainless steel during laser welding. Yosetsu Gakkai Ronbunshu 29:3 (2011), 90s–94s, 10.2207/qjjws.29.90s Available at.
Sonar, T., et al. An overview on welding of Inconel 718 alloy - effect of welding processes on microstructural evolution and mechanical properties of joints. Materials Characterization, 2021, Elsevier Inc, 10.1016/j.matchar.2021.110997 Available at.
Stritt, P. et al. (2019) ‘The effect of laser welding parameters on the grain structure distribution in the resultant weld’, in. Laser Institute of America, p. 1201. Available at: https://doi.org/10.2351/1.5119065.
Taheri, M., Halvaee, A., Kashani-Bozorg, S.F., Hot cracking of GTD-111 nickel-based superalloy welded by pulsed Nd:YAG laser. Metallogr., Microstruct., Anal. 9:1 (2020), 16–32, 10.1007/s13632-019-00602-8 Available at.
Tang, Z., Seefeld, T., Vollertsen, F., Grain refinement by laser welding of AA 5083 with addition of Ti/B. Physics Procedia, 2011, Elsevier B.V., 123–133, 10.1016/j.phpro.2011.03.016 Available at.
Tang, Z., Vollertsen, F., Influence of grain refinement on hot cracking in laser welding of aluminum. Weld. World 58:3 (2014), 355–366, 10.1007/s40194-014-0121-3 Available at.
Thavamani, R., et al. Mitigation of hot cracking in Inconel 718 superalloy by ultrasonic vibration during gas tungsten arc welding. J. Alloys Compd. 740 (2018), 870–878, 10.1016/j.jallcom.2017.12.295 Available at.
Wallerstein, D., et al. Recent developments in laser welding of aluminum alloys to steel. Metals (Basel), 11(4), 2021, 622, 10.3390/met11040622 Available at.
Wang, J., et al. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy. Opt. Laser Technol. 66 (2015), 15–21, 10.1016/j.optlastec.2014.08.009 Available at.
Wang, L., et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 108 (2016), 707–717, 10.1016/j.matdes.2016.07.053 Available at.
Wang, N., et al. Solidification cracking of superalloy single- and bi-crystals. Acta Mater. 52:11 (2004), 3173–3182, 10.1016/j.actamat.2004.03.047 Available at.
Wang, W., et al. A new test method for evaluation of solidification cracking susceptibility of stainless steel during laser welding. Materials (Basel), 13(14), 2020, 3178, 10.3390/ma13143178 Available at.
Wei, H.L., Elmer, J.W., Debroy, T., Origin of grain orientation during solidification of an aluminum alloy. Acta Mater. 115 (2016), 123–131, 10.1016/j.actamat.2016.05.057 Available at.
Weigl, M., Albert, F., Schmidt, M., Enhancing the ductility of laser-welded copper-aluminum connections by using adapted filler materials. Phys. Procedia, 2011, 335–341, 10.1016/j.phpro.2011.03.141 Available at.
Woizeschke, P., et al. Laser deep penetration welding of an aluminum alloy with simultaneously applied vibrations. Lasers Manuf. Mater. Process. 4:1 (2017), 1–12, 10.1007/s40516-016-0032-9 Available at.
Xu, C., et al. Evolution of microstructure, mechanical properties and corrosion resistance of ultrasonic assisted welded-brazed Mg/Ti joint. J. Mater. Sci. Technol. 32:12 (2016), 1253–1259, 10.1016/j.jmst.2016.08.029 Available at.
Xue, X., Wu, X., Liao, J., Hot-cracking susceptibility and shear fracture behavior of dissimilar Ti6Al4V/AA6060 alloys in pulsed Nd:YAG laser welding. Chin. J. Aeronaut. 34:4 (2021), 375–386, 10.1016/j.cja.2020.12.015 Available at.
Yan, S., et al. Experimental study on the grain evolution induced by thermal characteristics during oscillation laser welding of IN718. Mater. Lett., 2022, 323, 10.1016/j.matlet.2022.132581 Available at.
Yao, Z., et al. Equiaxed microstructure formation by ultrasonic assisted laser metal deposition. Manuf. Lett. 31 (2022), 56–59, 10.1016/j.mfglet.2021.07.002 Available at.
Yu, X.Y., et al. Fiber laser welding of WC-Co to carbon steel using Fe-Ni Invar as interlayer. Int. J. Refract. Met. Hard Mater 56 (2016), 76–86, 10.1016/j.ijrmhm.2015.12.006 Available at.
Zhang, P., et al. A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys. Optics and Laser Technology, 2021, Elsevier Ltd, 10.1016/j.optlastec.2021.107094 Available at.
Zhang, Y., et al. Reduced hot cracking susceptibility by controlling the fusion ratio in laser welding of dissimilar Al alloys joints. J. Mater. Res. 30:7 (2015), 993–1001, 10.1557/jmr.2015.64 Available at.
Zhang, Y., et al. Investigation on the effects of parameters on hot cracking and tensile shear strength of overlap joint in laser welding dissimilar Al alloys. Int. J. Adv. Manuf. Technol. 86:9–12 (2016), 2895–2904, 10.1007/s00170-016-8383-0 Available at.
Zhao, X.J., et al. η phase formation mechanism at cemented carbide YG30/steel 1045 joints during tungsten-inert-gas arc welding. Materials Science Forum, 2011, Trans Tech Publications Ltd, 901–904, 10.4028/www.scientific.net/MSF.675-677.901 Available at.
Zhou, S., et al. Follow-up ultrasonic vibration assisted laser welding dissimilar metals for nuclear reactor pump can end sealing. Nucl. Mater. Energy, 27, 2021, 10.1016/j.nme.2021.100975 Available at.
Zuo, D., et al. Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints. Mater. Des. 58 (2014), 357–362, 10.1016/j.matdes.2014.02.004 Available at.