[en] Theory: Digital technologies have become an integral part of everyday life that children are exposed to. Therefore, it is important for children to acquire an understanding of these technologies early on by teaching them computational thinking (CT) as a part of STEM. However, primary school teachers are often reluctant to teach CT. Expectancy-value theory suggests that motivational components play an important role in teaching and learning. Thus, one hindrance to teachers’ willingness to teach CT might be their low expectancies of success and high emotional costs, e.g., anxiety towards CT. Thus, introducing preservice teachers to CT during their university years might be a promising way to support their expectancies and values, while simultaneously alleviating their emotional costs. Prior CT competences might contribute to these outcomes.
Aims: We investigated whether a specifically designed seminar on CT affected preservice teachers’ expectancies and values towards programming.
Method: A total of 311 German primary school and special education preservice teachers took part in the study. The primary school preservice teachers received a seminar on CT and programming with low-threshold programming tasks, while the special education teachers served as a baseline group. The seminar was specifically designed to enhance expectancies and values and decrease
emotional costs, following implications of research on expectancy-value theory.
Results: The preservice teachers who visited the seminar gained higher expectancies and values towards CT and programming compared to the baseline group. Moreover, their emotional costs decreased. CT was positively related to change in expectancies and values and negatively related to emotional costs.
Discussion: Interventions with low-threshold programming tasks can support primary school preservice teachers in finding trust in their abilities and values towards CT. Moreover, their anxiety towards CT and programming can be alleviated. Thus, first steps in preparing preservice teachers to teach CT in their future classrooms can be taken in university.
Disciplines :
Education & instruction
Author, co-author :
WEBER, Anke Maria ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
Bastian, Morten; University of Kiel > Computing Education Research Group, Department of Computer Science
Barkela, Veronika; Rheinland-Pfälzische Technische Universität Kaiserslautern Landau > Erziehungswissenschaften
Mühling, Andreas; University of Kiel > Computing Education Research Group, Department of Computer Science
Leuchter, Miriam; Rheinland-Pfälzische Technische Universität Kaiserslautern > Erziehungswissenschaften
External co-authors :
yes
Language :
English
Title :
Fostering preservice teachers’ expectancies and values towards computational thinking
Publication date :
2022
Journal title :
Frontiers in Psychology
eISSN :
1664-1078
Publisher :
Frontiers Media S.A., Pully, Switzerland
Volume :
13
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences
Funders :
Deutsche Telekom Stiftung BMBF - Bundesministerium für Bildung und Forschung
Angeli C. Voogt J. Fluck A. Webb M. Cox M. Malyn-Smith J. et al. (2016). A K-6 computational thinking curriculum framework: implications for teacher knowledge. Educ. Technol. Soc. 19, 47–57. Available at: https://www.jstor.org/stable/jeductechsoci.19.3.47
Bandura A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 191–215. doi: 10.1037/0033-295X.84.2.191, PMID: 847061
Barr V. Stephenson C. (2011). Bringing computational thinking to K-12. ACM Inroads 2, 48–54. doi: 10.1145/1929887.1929905
Bastian M. Schneider Y. Mühling A. (2021). Diagnose von Fehlvorstellungen anhand von Programmabläufen in einem elektronischen Testsystem [diagnosis of misconceptions based on program sequences in an electronic test system]. Empirische Pädagogik 35, 72–92.
Bates D. Maechler M. Bolker B. Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. doi: 10.18637/jss.v067.i01
Belland B. R. Kim C. Hannafin M. J. (2013). A framework for designing scaffolds that improve motivation and cognition. Educ. Psychol. 48, 243–270. doi: 10.1080/00461520.2013.838920, PMID: 24273351
Bers M. U. (2018). Coding and computational thinking in early childhood: the impact of ScratchJr in Europe. Eur. J. STEM Educ. 3:8. doi: 10.20897/ejsteme/3868
Bescherer C. Fest A. (2019). “Mathematik und informatische Bildung. Programmieren mit scratch [mathematics and computer science education. Programming with scratch]” in Schriftenreihe Medienpädagogik interdisziplinär: Vol. 12. Digitale Medien in der Grundschullehrerbildung. Erfahrungen aus dem Projekt dileg-SL [Digital media in primary teacher education. Experiences from the dileg-SL project.]. eds. Junge T. Horst N. (München: Verlag kopaed), 117–130.
Bong M. Cho C. Ahn H. S. Kim H. J. (2012). Comparison of self-beliefs for predicting student motivation and achievement. J. Educ. Res. 105, 336–352. doi: 10.1080/00220671.2011.627401
Bouck E. C. Sands P. Long H. Yadav A. (2021). Preparing special education preservice teachers to teach computational thinking and computer science in mathematics. Teach. Educ. Spec. Educ. 44. doi: 10.1177/0888406421992376
Boulden D. C. Rachmatullah A. Oliver K. M. Wiebe E. (2021). Measuring in-service teacher self-efficacy for teaching computational thinking: development and validation of the T-STEM CT. Educ. Inf. Technol. 26, 4663–4689. doi: 10.1007/s10639-021-10487-2
Brackmann C. P. Román-González M. Robles G. Moreno-León J. Casali A. Barone D. (2017). “Development of computational thinking skills through unplugged activities in primary school” in Proceedings of the 12th Workshop on Primary and Secondary Computing Education. ed. Barendsen E. (New York: ACM), 65–72.
Brennan K. Resnick M. (2012). “Using artifact-based interviews to study the development of computational thinking in interactive media design” in Paper Presented at Annual American Educational Research Association Meeting (Vancouver: AME Research Group).
Butler D. Leahy M. (2021). Developing preservice teachers' understanding of computational thinking: A constructionist approach. Br. J. Educ. Technol. 52, 1060–1077. doi: 10.1111/bjet.13090
Curzon P. Dorling M. Ng T. Selby C. Woollard J. (2014). Developing Computational Thinking in the Classroom: A Framework. Swindon: Computing at School.
Di Lieto M. C. Inguaggiato E. Castro E. Cecchi F. Cioni G. Dell’Omo M. et al. (2017). Educational robotics intervention on executive functions in preschool children: a pilot study. Comput. Hum. Behav. 71, 16–23. doi: 10.1016/j.chb.2017.01.018
Dickes A. C. Sengupta P. Farris A. V. Basu S. (2016). Development of mechanistic reasoning and multilevel explanations of ecology in third grade using agent-based models. Sci. Educ. 100, 734–776. doi: 10.1002/sce.21217
Dowker A. Sarkar A. Looi C. Y. (2016). Mathematics anxiety: what have we learned in 60 years? Front. Psychol. 7:508. doi: 10.3389/fpsyg.2016.00508, PMID: 27199789
Eccles J. S. (2009). Who am I and what am I going to do with my life? Personal and collective identities as motivators of action. Educ. Psychol. 44, 78–89. doi: 10.1080/00461520902832368
Eccles J. S. Adler T. F. Futterman R. Goff S. B. Kaczala C. M. Meece J. L. [. J. L.]. et al. (1983). “Expectancies, values, and academic behaviors” in Achievement and Achievement Motivation. ed. Spence J. T. (New York: W. H. Freeman), 75–146.
Eccles J. S. Wigfield A. (1995). In the mind of the actor: the structure of adolescents' achievement task values and expectancy-related beliefs. Pers. Soc. Psychol. Bull. 21, 215–225. doi: 10.1177/0146167295213003
Eid M. Gollwitzer M. Schmitt M. (2015). Statistik und Forschungsmethoden: Mit Online-Materialien (Vol. 4, überarbeitete und erweiterte Auflage). Weinheim:Beltz.
Faber H. H. Wierdsma M. D. Doornbos R. P. van der Ven J. S. de Vette K. (2017). Teaching computational thinking to primary school students via unplugged programming lessons. J. Eur. Teach. Educ. Netw. 12, 13–24.
Faherty R. Quille K. Vivian R. McGill M. M. Becker B. A. Nolan K. (2021). “Comparing programming self-esteem of upper secondary school teachers to CS1 students.” in ITiCSE, Dublin; June 2021
Feierabend S. Rathgeb T. Reutter T. (2019). KIM-Studie 2018 Basisuntersuchung zum Medienumgang 6-bis 13-Jähriger KIM Studie 2018. Kindheit, Internet, Medien. Basisuntersuchung zum Medienumgang 6-bis 13-Jähriger. Available at: https://www.mpfs.de/fileadmin/files/Studien/KIM/2018/KIM-Studie_2018_web.pdf (Accessed August 25, 2022).
Gal-Ezer J. Stephenson C. (2010). Computer science teacher preparation is critical. ACM Inroads 1, 61–66. doi: 10.1145/1721933.1721953
Garet M. S. Porter A. C. Desimone L. Birman B. F. Yoon K. S. [. K. S.]. (2001). What makes professional development effective? Results from a national sample of teachers. Am. Educ. Res. J. 38, 915–945. doi: 10.3102/00028312038004915
Guthrie J. T. Wigfield A. Barbosa P. Perencevich K. C. Taboada A. Davis M. H. et al. (2004). Increasing reading comprehension and engagement through concept-oriented reading instruction. J. Educ. Psychol. 96, 403–423. doi: 10.1037/0022-0663.96.3.403
Hidi S. E. Renninger K. A. Northoff G. (2017). “The development of interest and self-related processing” in International Advances in Self Research. Self. Driving Positive Psychology and Well-Being. Vol. 6 eds. Guay F. Marsh H. W. McInerney D. M. Craven R. G. (Charlotte: Information Age Publishing), 51–70.
Hsu T.-C. Chang S.-C. Hung Y.-T. (2018). How to learn and how to teach computational thinking: suggestions based on a review of the literature. Comput. Educ. 126, 296–310. doi: 10.1016/j.compedu.2018.07.004
Jaipal-Jamani K. Angeli C. (2017). Effect of robotics on elementary preservice teachers’ self-efficacy, science learning, and computational thinking. J. Sci. Educ. Technol. 26, 175–192. doi: 10.1007/s10956-016-9663-z
Kazakoff E. R. Sullivan A. Bers M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Educ. J. 41, 245–255. doi: 10.1007/s10643-012-0554-5
Kong S. C. Chiu M. M. Lai M. (2018). A study of primary school students' interest, collaboration attitude, and programming empowerment in computational thinking education. Comput. Educ. 127, 178–189. doi: 10.1016/j.compedu.2018.08.026
Kuznetsova A. Brockhoff P. B. Christensen R. H. B. (2017). lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. doi: 10.18637/jss.v082.i13
Lamprou A. Repenning A. (2018). “Teaching how to teach computation thinking”, In Proceedings of the 23rd Annual ACM Conferences on Innovation and Technology in Computer Science Education (ITiSCE 2018). (pp. 69–74).New York: Association for Compting Machinery.
Lee J. Lee M. Bong M. (2013). “High value with low perceived competence as an amplifier of self-worth threat” in International Advances in Self Research. Theory Driving Research: New Wave Perspectives on Self-Processes and human Development. eds. McInerney D. M. Marsh H. W. Craven R. G. (Charlotte: Information Age Publishing Inc.), 205–232.
Marsh H. W. van Zanden B. Parker P. D. Guo J. Conigrave J. Seaton M. (2019). Young women face disadvantage to enrollment in university STEM coursework regardless of prior achievement and attitudes. Am. Educ. Res. J. 56, 1629–1680. doi: 10.3102/0002831218824111
Marsh H. W. Xu M. Martin A. J. (2012). “Self-concept: a synergy of theory, method, and application” in APA Educational Psychology Handbook: Vol. 1. Theories, Constructs, and Critical Issues. eds. Harris K. R. Graham S. Urdan T. (Washington, D.C.: American Psychological Association), 427–458.
Matsunaga M. (2010). How to factor-analyze your data right: do’s, don’ts, and how-to’s. Int. J. Psychol. Res. 3, 97–110. doi: 10.21500/20112084.854
Ministerium für Bildung, Wissenschaft, Jugend und Kultur (Ed.). (2018). Teilrahmenplan Sachunterricht: Richtlinie zur Digitalen Bildung in der Primarstufe [Sub-Framework for Science Teaching: Guideline for digital Education in Primary Education]. Ministerium für Bildung, Wissenschaft, Jugend und Kultur.
Mühling A. Ruf A. Hubwieser P. (2015). “Design and first results of a psychometric test for measuring basic programming abilities.” in Proceedings of the Workshop in Primary and Secondary Computing Education, 2–10.
Musu-Gillette L. E. Wigfield A. Harring J. R. Eccles J. S. (2015). Trajectories of change in students’ self-concepts of ability and values in math and college major choice. Educ. Res. Eval. 21, 343–370. doi: 10.1080/13803611.2015.1057161
Nagengast B. Marsh H. W. Scalas L. F. Xu M. K. Hau K.-T. Trautwein U. (2011). Who took the “x” out of expectancy-value theory? A psychological mystery, a substantive-methodological synergy, and a cross-national generalization. Psychol. Sci. 22, 1058–1066. doi: 10.1177/0956797611415540, PMID: 21750248
National Research Council (2010). Committee for the Workshops on Computational Thinking: Report of a Workshop on the scope and Nature of Computational Thinking. Washington, DC: National Academies Press
Newell A. Shaw J. C. Simon H. A. (1959). “A variety of intelligent learning in a general problem solver” in Paper Presented at the Interdisciplinary Conference on Self-Organizing Systems (Chicago: Illinois).
Nolan K. Bergin S. (2016). “The role of anxiety when learning to program: a systematic review of the literature” in Koli Calling '16 Proceedings of the 16th Koli Calling International Conference on Computing Education Research (Koli National Park: Finnland).
Nugent G. Barker B. Welch G. Grandgenett N. Wu C. Nelson C. (2015). A model of factors contributing to STEM learning and career orientation. Int. J. Sci. Educ. 37, 1067–1088. doi: 10.1080/09500693.2015.1017863
OECD (2018). “Computational thinking” in Educational Research and Innovation. Teachers as Designers of Learning Environments: The Importance of Innovative Pedagogies. eds. Paniagua A. Istance D. (Berlin: OECD Publishing), 101–108.
OECD (2021). Education at a Glance 2021: OECD Indicators. Berlin: OECD Publishing.
O’Mara A. J. Marsh H. W. Craven R. G. Debus R. L. (2006). Do self-concept interventions make a difference, a synergistic blend of construct validation and meta-analysis. Educ. Psychol. 41, 181–206. doi: 10.1207/s15326985ep4103_4
R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing [Computer software]. Vienna
Resnick M. Maloney J. Monroy-Hernández A. Rusk N. Eastmond E. Brennan K. et al. (2009). Scratch: programming for all. Commun. ACM 52, 60–67. doi: 10.1145/1592761.1592779
Reuter T. Weber A. M. Nitz S. Leuchter M. (2021). Problemlösen in digitalen Kontexten [Problem solving in digital contexts]. Empirische Pädagogik 35, 5–18.
Revelle W. (2021). psych: Procedures for Psychological, Psychometric, and Personality Reseach (Version R package version 2.1.3) [Computer software], Evanston, IL: Northwestern University.
Rich P. J. Larsen R. A. Mason S. L. (2021). Measuring teacher beliefs about coding and computational thinking. J. Res. Technol. Educ. 53, 296–316. doi: 10.1080/15391523.2020.1771232
Román-González M. Pérez-González J.-C. Jiménez-Fernández C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Comput. Hum. Behav. 72, 678–691. doi: 10.1016/j.chb.2016.08.047
Schmader T. Johns M. Forbes C. (2008). An integrated process model of stereotype threat effects on performance. Psychol. Rev. 115, 336–356. doi: 10.1037/0033-295X.115.2.336, PMID: 18426293
Sengupta P. Dickes A. C. Farris A. V. (2018). “Toward a phenomenology of computational thinking in K-12 STEM” in Computational Thinking in STEM Siscipline: Foundations and Research Highlights. ed. Khine M. S. (Berlin: Springer) doi: 10.1007/978-3-319-93566-9_4
Shapiro J. R. Williams A. M. (2012). The role of stereotype threats in undermining girls’ and women’s performance and interest in STEM fields. Sex Roles 66, 175–183. doi: 10.1007/s11199-011-0051-0
Shute V. J. (1991). Who is likely to acquire programming skills. J. Educ. Comput. Res. 7, 1–24. doi: 10.2190/VQJD-T1YD-5WVB-RYPJ
Shute V. J. Sun C. Asbell-Clarke J. (2017). Demystifying computational thinking. Educ. Res. Rev. 22, 142–158. doi: 10.1016/j.edurev.2017.09.003
Trautwein U. Nagengast B. Marsh H. W. Gaspard H. Dicke A.-L. Lüdtke O. et al. (2013). “Expectancy-value theory revisited: From expectancy-value theory to expactancy-values theory” in International Advances in Self Research. Theory Driving Research: New Wave Perspectives on Self-Processes and human Development. eds.McInerney D. M. Marsh H. W. Craven R. G. (Charlotte: Information Age Publishing Inc.), 233–249.
van de Pol J. Volman M. Beishuizen J. (2010). Scaffolding in teacher–student interaction: a decade of research. Educ. Psychol. Rev. 22, 271–296. doi: 10.1007/s10648-010-9127-6
Weber A. M. Barkela V. Stiel-Dämmer S. Leuchter M. (2021). Der Zusammenhang emotionaler Kosten bei Grundschullehramtsstudierenden mit ihrer informatischen Problemlösekompetenz [The relation of primary school student teachers’ emotional costs and their informatic problem solving]. Empirische Pädagogik 35, 93–111.
White G. Sivitanides M. (2003). An empirical investigation of the relationship between success in mathematics and visual programming courses. Journal of information systems education. J. Inf. Syst. Educ. 14, 409–416.
Wigfield A. Cambria J. (2010). Students’ achievement values, goal orientations, and interest: definitions, development, and relations to achievement outcomes. Dev. Rev. 30, 1–35. doi: 10.1016/j.dr.2009.12.001
Wigfield A. Eccles J. S. Yoon K. S. [. K. S.]. Harold R. D. Arbreton A. J. A. Freedman-Doan C. et al. (1997). Change in children's competence beliefs and subjective task values across the elementary school years: a 3-year study. J. Educ. Psychol. 89, 451–469. doi: 10.1037/0022-0663.89.3.451
Wigfield A. Gladstone J. R. Turci L. (2017). “Development of children's ability beliefs and values and school-based interventions to improve them” in International Advances in Self Research: Vol. 6. Self. Driving Positive Psychology and Well-Being. eds. Guay F. Marsh H. W. McInerney D. M. Craven R. G. (Charlotte: Information Age Publishing), 283–308.
Wigfield A. Guthrie J. T. (2010). “The impact of concept-oriented reading instruction on students’ reading motivation, reading engagement, and reading comprehension” in Handbook of Research on Schools, Schooling, and Human Development. eds. Meece J. L. Eccles J. S.. 1st ed (Milton Park: Routledge), 463–477.
Wigfield A. Mason-Singh A. Ho A. N. Guthrie J. T. (2014). “Intervening to improve children's reading motivation and comprehension: concept-oriented reading instruction” in Advances in Motivation and Achievement: Vol. 18. Motivational Interventions, 1st Edn. ed. Karabenick S. A. (Bingley, Emerald),37–70.
Wigfield A. Meece J. L. (1988). Math anxiety in elementary and secondary school students. J. Educ. Psychol. 80, 210–216. doi: 10.1037/0022-0663.80.2.210
Wigfield A. Tonks S. [. S.]. (2004). “The development of motivation for reading and how it is influenced by CORI” in Motivating Reading Comprehension: Concept-Oriented Reading Instruction. eds. Guthrie J. T. Wigfield A. Perencevich K. C. (New York, NY: L. Erlbaum Associates), 249–272.
Wing J. M. (2006). Computational thinking. Commun. ACM 49, 33–35. doi: 10.1145/1118178.1118215
Yadav A. Mayfield C. Zhou N. Hambrusch S. Korb J. T. (2014). Computational thinking in elementary and secondary teacher education. ACM Trans. Comput. Educ. 14, 1–16. doi: 10.1145/2576872
Yadav A. Stephenson C. Hong H. (2017). Computational thinking for teacher education. Commun. ACM 60, 55–62. doi: 10.1145/2994591
Zhang L. Nouri J. (2019). A systematic review of learning computational thinking through scratch in K-9, 103607. Comput. Educ. 141. doi: 10.1016/j.compedu.2019.103607
Zhao M. Zhao M. Wang X.-H. Ma H.-L. (2020). “Promoting teaching self-efficacy in computational thinking of school teachers” in Ninth International Conference of Educational Innovation through Technology (EITT) (Porto: Portugal).