[en] We propose a model for solvated positronium (Ps) atoms in water, based on the sequential quantum mechanics/molecular mechanics (s-QM/MM) protocol. We developed a Lennard-Jones force field to account for Ps–water interactions in the MM step. The repulsive term was obtained from a previously reported model for the solvated electron, while the dispersion constant was derived from the Slater–Kirkwood formula. The force field was employed in classical Monte Carlo (MC) simulations to generate Ps–solvent configurations in the NpT ensemble, while the quantum properties were computed with the any-particle molecular orbital method in the subsequent QM step. Our approach is general, as it can be applied to other liquids and materials. One basically needs to describe the solvated electron in the environment of interest to obtain the Ps solvation model. The thermodynamical properties computed from the MC simulations point out similarities between the solvation of Ps and noble gas atoms, hydrophobic solutes that form clathrate structures. We performed convergence tests for the QM step, with particular attention to the choice of basis set and expansion centers for the positronic and electronic subsystems. Our largest model was composed of the Ps atom and 22 water molecules in the QM region, corresponding to the first solvation shell, surrounded by 128 molecules described as point charges. The mean electronic and positronic vertical detachment energies were (4.73 ± 0.04) eV and (5.33 ± 0.04) eV, respectively. The latter estimates were computed with Koopmans’ theorem corrected by second-order self-energies, for a set of statistically uncorrelated MC configurations. While the Hartree–Fock wave functions do not properly account for the annihilation rates, they were useful for numerical tests, pointing out that annihilation is more sensitive to the choice of basis sets and expansion centers than the detachment energies. We further explored a model with reduced solute cavity size by changing the Ps–solvent force field. Although the pick-off annihilation lifetimes were affected by the cavity size, essentially the same conclusions were drawn from both models.
Disciplines :
Physique Chimie
Auteur, co-auteur :
Bergami, Mateus
Santana, Andre L. D.
CHARRY MARTINEZ, Jorge Alfonso ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Reyes, Andres
Coutinho, Kaline
Varella, Márcio T. Do N.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Multicomponent Quantum Mechanics/Molecular Mechanics Study of Hydrated Positronium
Date de publication/diffusion :
2022
Titre du périodique :
Journal of Physical Chemistry B
ISSN :
1520-6106
Volume/Tome :
126
Fascicule/Saison :
14
Pagination :
2699-2714
Peer reviewed :
Peer reviewed
Focus Area :
Physics and Materials Science Computational Sciences
Čížek, J. Characterization of lattice defects in metallic materials by positron annihilation spectroscopy: A review. Journal of Materials Science & Technology 2018, 34, 577-598, 10.1016/j.jmst.2017.11.050
Krause-Rehberg, R.; Leipner, H. S. Positron annihilation in semiconductors: defect studies; Springer Science & Business Media, 1999.
Pethrick, R. A. Positron annihilation─a probe for nanoscale voids and free volume?. Prog. Polym. Sci. 1997, 22, 1-47, 10.1016/S0079-6700(96)00023-8
Sharma, S.; Pujari, P. Role of free volume characteristics of polymer matrix in bulk physical properties of polymer nanocomposites: A review of positron annihilation lifetime studies. Prog. Polym. Sci. 2017, 75, 31-47, 10.1016/j.progpolymsci.2017.07.001
Zubiaga, A.; Warringham, R.; Boltz, M.; Cooke, D.; Crivelli, P.; Gidley, D.; Pérez-Ramírez, J.; Mitchell, S. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects. Phys. Chem. Chem. Phys. 2016, 18, 9211-9219, 10.1039/C6CP00408C
Singh, A. N. Positron annihilation spectroscopy in tomorrow's material defect studies. Appl. Spectrosc. Rev. 2016, 51, 359-378, 10.1080/05704928.2016.1141290
Maheshwari, P.; Gorgol, M.; Kierys, A.; Zaleski, R. Positron Probing of Liquid-free Volume To Investigate Adsorption-Desorption Behavior of Water in Two-Dimensional Mesoporous SBA-3. J. Phys. Chem. C 2017, 121, 17251-17262, 10.1021/acs.jpcc.7b04317
Jean, Y. C.; Mallon, P. E.; Schrader, D. M. Principles and Applications of Positron and Positronium Chemistry; World Scientific: Singapore, 2003.
Gidley, D. W.; Peng, H.-G.; Vallery, R. S. Positron annihilation as a method to characterize porous materials. Annu. Rev. Mater. Res. 2006, 36, 49-79, 10.1146/annurev.matsci.36.111904.135144
Chen, H. M.; Van Horn, J. D.; Jean, Y. C. Applications of positron annihilation spectroscopy to life science. Defect and diffusion forum 2012, 331, 275-293, 10.4028/www.scientific.net/DDF.331.275
Fong, C.; Dong, A. W.; Hill, A. J.; Boyd, B. J.; Drummond, C. J. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems. Phys. Chem. Chem. Phys. 2015, 17, 17527-17540, 10.1039/C5CP01921D
García-Arribas, A. B.; Axpe, E.; Mujika, J. I. n.; Mérida, D.; Busto, J. V.; Sot, J.; Alonso, A.; Lopez, X.; García, J. A.; Ugalde, J. M. et al. Cholesterol-ceramide interactions in phospholipid and sphingolipid bilayers as observed by positron annihilation lifetime spectroscopy and molecular dynamics simulations. Langmuir 2016, 32, 5434-5444, 10.1021/acs.langmuir.6b00927
Dong, A. W.; Fong, C.; Waddington, L. J.; Hill, A. J.; Boyd, B. J.; Drummond, C. J. Application of positron annihilation lifetime spectroscopy (PALS) to study the nanostructure in amphiphile self-assembly materials: phytantriol cubosomes and hexosomes. Phys. Chem. Chem. Phys. 2015, 17, 1705-1715, 10.1039/C4CP04343J
Chieng, N.; Cicerone, M. T.; Zhong, Q.; Liu, M.; Pikal, M. J. Characterization of dynamics in complex lyophilized formulations: II. Analysis of density variations in terms of glass dynamics and comparisons with global mobility, fast dynamics, and Positron Annihilation Lifetime Spectroscopy (PALS). Eur. J. Pharm. Biopharm. 2013, 85, 197-206, 10.1016/j.ejpb.2013.03.036
Muehllehner, G.; Karp, J. S. Positron emission tomography. Physics in Medicine & Biology 2006, 51, R117, 10.1088/0031-9155/51/13/R08
Weber, W. A. Positron emission tomography as an imaging biomarker. Journal of Clinical Oncology 2006, 24, 3282-3292, 10.1200/JCO.2006.06.6068
Jones, T.; Townsend, D. W. History and future technical innovation in positron emission tomography. Journal of Medical Imaging 2017, 4, 011013, 10.1117/1.JMI.4.1.011013
Stepanov, P. S.; Selim, F. A.; Stepanov, S. V.; Bokov, A. V.; Ilyukhina, O. V.; Duplâtre, G.; Byakov, V. M. Interaction of positronium with dissolved oxygen in liquids. Phys. Chem. Chem. Phys. 2020, 22, 5123-5131, 10.1039/C9CP06105C
Shibuya, K.; Saito, H.; Nishikido, F.; Takahashi, M.; Yamaya, T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Communications Physics 2020, 3, 1-8, 10.1038/s42005-020-00440-z
Kacperski, K.; Spyrou, N. M.; Smith, F. A. Three-gamma annihilation imaging in positron emission tomography. IEEE transactions on medical imaging 2004, 23, 525-529, 10.1109/TMI.2004.824150
Moskal, P.; Kisielewska, D.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kacprzak, K. et al. Feasibility study of the positronium imaging with the J-PET tomograph. Physics in Medicine & Biology 2019, 64, 055017, 10.1088/1361-6560/aafe20
White, R. D.; Tattersall, W.; Boyle, G.; Robson, R. E.; Dujko, S.; Petrovic, Z. L.; Bankovic, A.; Brunger, M. J.; Sullivan, J. P.; Buckman, S. J. et al. Low-energy electron and positron transport in gases and soft-condensed systems of biological relevance. Applied Radiation and Isotopes 2014, 83, 77-85, 10.1016/j.apradiso.2013.01.008
Solov'yov, A. V. Nanoscale insights into ion-beam cancer therapy; Springer, 2016.
Moadel, R. M.; Weldon, R. H.; Katz, E. B.; Lu, P.; Mani, J.; Stahl, M.; Blaufox, M. D.; Pestell, R. G.; Charron, M. J.; Dadachova, E. Positherapy: targeted nuclear therapy of breast cancer with 18F-2-deoxy-2-fluoro-D-glucose. Cancer Res. 2005, 65, 698-702
Hioki, T.; Gholami, Y. H.; Katz, K. J.; McKelvey; Aslani, A.; Marquis, H.; Eslick, E. M.; Willowson, K. P.; Howell, V. M.; Bailey, D. L. Overlooked potential of positrons in cancer therapy. Sci. Rep. 2021, 11, 2475, 10.1038/s41598-021-81910-4
Solov'yov, A. V.; Surdutovich, E.; Scifoni, E.; Mishustin, I.; Greiner, W. Physics of ion beam cancer therapy: a multiscale approach. Phys. Rev. E 2009, 79, 011909, 10.1103/PhysRevE.79.011909
Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. L.; White, R. D. Positron kinetics in an idealized PET environment. Sci. Rep. 2015, 5, 1-10, 10.1038/srep12674
Stepanov, S. V.; Byakov, V. M.; Zvezhinskiy, D. S.; Duplâtre, G.; Nurmukhametov, R. R.; Stepanov, P. S. Positronium in a liquid phase: formation, bubble state and chemical reactions. Adv. Phys. Chem. 2012, 2012, 431962, 10.1155/2012/431962
Stepanov, S. V.; Byakov, V.; Zvezhinskiy, D.; Duplâtre, G. Enegertics of the Ps Formation: Role of the Solvated Electron. Defect and Diffusion Forum 2017, 373, 17-22, 10.4028/www.scientific.net/DDF.373.17
Castellaz, P.; Siegle, A.; Stoll, H. Positron age-momentum-correlation (AMOC) measurements on organic liquids. Journal of Nuclear and Radiochemical Sciences 2002, 3, R1-R7, 10.14494/jnrs2000.3.2_R1
Jasińska, B.; Zgardzińska, B.; Chołubek, G.; Pietrow, M.; Gorgol, M.; Wiktor, K.; Wysoglad, K.; Białas, P.; Curceanu, C.; Czerwiński, E. et al. Human tissue investigations using PALS technique: free radicals influence. Acta Phys. Polym., A 2017, 132, 1556-1558, 10.12693/APhysPolA.132.1556
Stepanov, S. V.; Zvezhinskiy, D.; Duplâtre, G.; Byakov, V.; Batskikh, Y. Y.; Stepanov, P. S. Incorporation of the magnetic quenching effect into the blob model of Ps formation. Finite sized Ps in a potential well. Mater. Sci. Forum 2010, 666, 109-114, 10.4028/www.scientific.net/MSF.666.109
Ferrell, R. A. Long Lifetime of Positronium in Liquid Helium. Phys. Rev. 1957, 108, 167-168, 10.1103/PhysRev.108.167
Tao, S. J. Positronium Annihilation in Molecular Substances. J. Chem. Phys. 1972, 56, 5499-5510, 10.1063/1.1677067
Eldrup, M.; Lightbody, D.; Sherwood, J. N. The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 1981, 63, 51-58, 10.1016/0301-0104(81)80307-2
Stepanov, S. V.; Zvezhinskiy, D. S.; Byakov, V. M. Beyond the point ps approximation. Mater. Sci. Forum 2012, 733, 7-14, 10.4028/www.scientific.net/MSF.733.7
Zgardzińska, B. The size of smallest subnanometric voids estimated by positron annihilation method. Correction to the Tao-Eldrup model. Chem. Phys. Lett. 2015, 622, 20-22, 10.1016/j.cplett.2015.01.021
Tanzi Marlotti, G; Consolati, G; Castelli, F Formal calculation of exchange correlation effects on annihilation lifetimes of positronium confined in small cavities. J. Phys.: Condens. Matter 2020, 32, 025602, 10.1088/1361-648X/ab477e
Chuev, G. N.; Schrader, D. M.; Stepanov, S. V.; Byakov, V. M. Quantum mechanics of solvated complexes: A test for positronium. Int. J. Quantum Chem. 2002, 88, 634-641, 10.1002/qua.10214
Chuev, G. N. Integral equation treatment of solvated quantum particles. J. Mol. Liq. 2003, 105, 161-164, 10.1016/S0167-7322(03)00047-3
Schmitz, H.; Müller-Plathe, F. Calculation of the lifetime of positronium in polymers via molecular dynamics simulations. J. Chem. Phys. 2000, 112, 1040-1045, 10.1063/1.480627
Larrimore, L.; McFarland, R.; Sterne, P.; Bug, A. L. A two-chain path integral model of positronium. J. Chem. Phys. 2000, 113, 10642-10650, 10.1063/1.1323979
Miller, B. N.; Reese, T. Path integral simulation of positronium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2002, 192, 176-179, 10.1016/S0168-583X(02)00864-9
Bug, A. L.; Sterne, P. Path integral Monte Carlo simulations of positronium annihilation: From micropores to mesopores. Phys. Rev. B 2006, 73, 094106, 10.1103/PhysRevB.73.094106
Bug, A. L.; Cronin, T. W.; Sterne, P.; Wolfson, Z. S. Simulation of positronium: Toward more realistic models of void spaces in materials. Radiat. Phys. Chem. 2007, 76, 237-242, 10.1016/j.radphyschem.2006.03.043
Tachikawa, M.; Kita, Y.; Buenker, R. J. Bound states of the positron with nitrile species with a configuration interaction multi-component molecular orbital approach. Phys. Chem. Chem. Phys. 2011, 13, 2701-2705, 10.1039/C0CP01650K
Reyes, A.; Moncada, F.; Charry, J. The any particle molecular orbital approach: A short review of the theory and applications. Int. J. Quantum Chem. 2019, 119, e25705 10.1002/qua.25705
Coutinho, K.; Canuto, S. Solvent Effects from a Sequential Monte Carlo-Quantum Mechanical Approach. Adv. Quantum Chem. 1997, 28, 89-105, 10.1016/S0065-3276(08)60209-9
Ludwig, V.; Coutinho, K.; Canuto, S. Sequential classical-quantum description of the absorption spectrum of the hydrated electron. Phys. Rev. B 2004, 70, 214110, 10.1103/PhysRevB.70.214110
Blanco, F.; Roldán, A.; Krupa, K.; McEachran, R.; White, R.; Marjanović, S.; Petrović, Z. L.; Brunger, M. J.; Machacek, J.; Buckman, S. J. et al. Scattering data for modelling positron tracks in gaseous and liquid water. Journal of Physics B: Atomic, Molecular and Optical Physics 2016, 49, 145001, 10.1088/0953-4075/49/14/145001
Incerti, S.; Kyriakou, I.; Bernal, M.; Bordage, M.-C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S. B. et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys. 2018, 45, e722-e739, 10.1002/mp.13048
Schuemann, J.; McNamara, A.; Ramos-Méndez, J.; Perl, J.; Held, K.; Paganetti, H.; Incerti, S.; Faddegon, B. TOPAS-nBio: an extension to the TOPAS simulation toolkit for cellular and sub-cellular radiobiology. Radiation research 2019, 191, 125-138, 10.1667/RR15226.1
Cezar, H. M.; Canuto, S.; Coutinho, K. DICE: A Monte Carlo Code for Molecular Simulation Including the Configurational Bias Monte Carlo Method. J. Chem. Inf. Model. 2020, 60, 3472-3488, 10.1021/acs.jcim.0c00077
Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269-6271, 10.1021/j100308a038
Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005, 10.1103/PhysRevLett.102.073005
Martin, D.; Fraser, P. The van der Waals force between positronium and light atoms. Journal of Physics B: Atomic and Molecular Physics 1980, 13, 3383, 10.1088/0022-3700/13/17/017
Johnson, R. D., III, Ed. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 21; NIST, 2020.
Herbert, J. M. Structure of the aqueous electron. Phys. Chem. Chem. Phys. 2019, 21, 20538-20565, 10.1039/C9CP04222A
Lan, J.; Kapil, V.; Gasparotto, P.; Ceriotti, M.; Iannuzzi, M.; Rybkin, V. V. Simulating the ghost: quantum dynamics of the solvated electron. Nat. Commun. 2021, 12, 1-6, 10.1038/s41467-021-20914-0
Flores-Moreno, R.; Posada, E.; Moncada, F.; Romero, J.; Charry, J.; Díaz-Tinoco, M.; González, S. A.; Aguirre, N. F.; Reyes, A. LOWDIN: The any particle molecular orbital code. Int. J. Quantum Chem. 2014, 114, 50-56, 10.1002/qua.24500
Charry, J.; Romero, J.; Varella, M. T. d. N.; Reyes, A. Calculation of positron binding energies of amino acids with the any-particle molecular-orbital approach. Phys. Rev. A 2014, 89, 052709, 10.1103/PhysRevA.89.052709
Romero, J.; Charry, J. A.; Flores-Moreno, R.; Varella, M. T. d. N.; Reyes, A. Calculation of positron binding energies using the generalized any particle propagator theory. J. Chem. Phys. 2014, 141, 114103, 10.1063/1.4895043
Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592, 10.1002/jcc.22885
Robles, J. C.; Ogando, E.; Plazaola, F. Positron lifetime calculation for the elements of the periodic table. J. Phys.: Condens. Matter 2007, 19, 176222, 10.1088/0953-8984/19/17/176222
Barbiellini, B.; Kuriplach, J. Proposed parameter-free model for interpreting the measured positron annihilation spectra of materials using a generalized gradient approximation. Physical review letters 2015, 114, 147401, 10.1103/PhysRevLett.114.147401
Fraser, P. Positrons and Positronium in Gases. Advances in Atomic and Molecular Physics; Academic Press, 1968; Vol. 4; pp 63-107.
Ryzhikh, G.; Mitroy, J. Positron annihilation profiles for HPs and He (3Se) e+. Journal of Physics B: Atomic, Molecular and Optical Physics 1999, 32, 4051, 10.1088/0953-4075/32/16/305
Becke, A. D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547-2553, 10.1063/1.454033
Zwanzig, R. W. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 1954, 22, 1420-1426, 10.1063/1.1740409
Jorgensen, W. L.; Ravimohan, C. Monte Carlo simulation of differences in free energies of hydration. J. Chem. Phys. 1985, 83, 3050-3054, 10.1063/1.449208
Georg, H. C.; Coutinho, K.; Canuto, S. A look inside the cavity of hydrated a-cyclodextrin: A computer simulation study. Chem. Phys. Lett. 2005, 413, 16-21, 10.1016/j.cplett.2005.07.036
Straatsma, T. P.; Berendsen, H. J. C.; Postma, J. P. M. Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water. J. Chem. Phys. 1986, 85, 6720-6727, 10.1063/1.451846
Guedes, R. C.; Coutinho, K.; Cabral, B. J. C.; Canuto, S.; Correia, C. F.; dos Santos, R. M. B.; Martinho Simões, J. A. Solvent Effects on the Energetics of the Phenol O-H Bond: Differential Solvation of Phenol and Phenoxy Radical in Benzene and Acetonitrile. J. Phys. Chem. A 2003, 107, 9197-9207, 10.1021/jp035912c
Haselmeier, R.; Holz, M.; Marbach, W.; Weingaertner, H. Water Dynamics near a Dissolved Noble Gas. First Direct Experimental Evidence for a Retardation Effect. J. Phys. Chem. 1995, 99, 2243-2246, 10.1021/j100008a001
Canuto, S.; Coutinho, K. From Hydrogen Bond to Bulk: Solvation Analysis of the n-π∗ Transition of Formaldehyde in Water. Int. J. Quantum Chem. 2000, 77, 192-198, 10.1002/(SICI)1097-461X(2000)77:1<192::AID-QUA18>3.0.CO;2-2
Barreto, R. C.; Coutinho, K.; Georg, H. C.; Canuto, S. Combined Monte Carlo and quantum mechanics study of the solvatochromism of phenol in water. The origin of the blue shift of the lowest π-π∗ transition. Phys. Chem. Chem. Phys. 2009, 11, 1388-1396, 10.1039/b816912h
Frigato, T.; VandeVondele, J.; Schmidt, B.; Schütte, C.; Jungwirth, P. Ab initio molecular dynamics simulation of a medium-sized water cluster anion: From an interior to a surface-located excess electron via a delocalized state. J. Phys. Chem. A 2008, 112, 6125-6133, 10.1021/jp711545s
Siefermann, K. R.; Liu, Y.; Lugovoy, E.; Link, O.; Faubel, M.; Buck, U.; Winter, B.; Abel, B. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nature Chem. 2010, 2, 274-279, 10.1038/nchem.580
Nummela, M.; Raebiger, H.; Yoshida, D.; Tachikawa, M. Positron binding properties of glycine and its aqueous complexes. J. Phys. Chem. A 2016, 120, 4037-4042, 10.1021/acs.jpca.6b01780
Elkins, M. H.; Williams, H. L.; Shreve, A. T.; Neumark, D. M. Relaxation mechanism of the hydrated electron. Science 2013, 342, 1496-1499, 10.1126/science.1246291
Gribakin, G.; Ludlow, J. Many-body theory of positron-atom interactions. Phys. Rev. A 2004, 70, 032720, 10.1103/PhysRevA.70.032720
Strasburger, K.; Chojnacki, H. On the reliability of the SCF and CI wavefunctions for systems containing positrons. Chemical Physics Letters 1995, 241, 485-489, 10.1016/0009-2614(95)00695-Z