Burr, G. W. et al. Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008).
Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).
Garrity, K. F., Rabe, K. M. & Vanderbilt, D. Hyperferroelectrics: proper ferroelectrics with persistent polarization. Phys. Rev. Lett. 112, 127601 (2014).
Bousquet, E. et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732–736 (2008).
Müller, K. A. & Burkard, H. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979).
Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, 2001).
Chikazumi, S. Physics of Ferromagnetism (Oxford University Press, 1997).
Morrish, A. H. The Physical Principles of Magnetism, 1st edition (Wiley-IEEE Press, 2001).
Seo, H. I. et al. Crystalline symmetry-dependent magnon formation in the itinerant ferromagnet SrRuO3. Phys. Rev. B 103, 045104 (2021).
Chen, Z. et al. Giant tuning of ferroelectricity in single crystals by thickness engineering. Sci. Adv., 6, eabc7156 (2020).
Chen, Z. et al. Facilitation of ferroelectric switching via mechanical manipulation of hierarchical nanoscale domain structures. Phys. Rev. Lett. 118, 017601 (2017).
Xu, R. et al. Kinetic control of tunable multi-state switching in ferroelectric thin films. Nat. Commun. 10, 1282 (2019).
Xu, R. et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater. 14, 79–86 (2015).
Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014). DOI: 10.1038/nature14004
Munro, J. M. et al. Discovering minimum energy pathways via distortion symmetry groups. Phys. Rev. B 98, 085107 (2018).
Kornev, I. A., Lisenkov, S., Haumont, R., Dkhil, B. & Bellaiche, L. Finite-temperature properties of multiferroic BiFeO3. Phys. Rev. Lett. 99, 227602 (2007).
Marton, P., Klíč, A., Paściak, M. & Hlinka, J. First-principles-based Landau-Devonshire potential for BiFeO3. Phys. Rev. B 96, 174110 (2017).
Pesquera, D. et al. Beyond substrates: strain engineering of ferroelectric membranes. Adv. Mater. 32, 2003780 (2020).
Jo, J. Y. et al. Polarization switching dynamics governed by the thermodynamic nucleation process in ultrathin ferroelectric films. Phys. Rev. Lett. 97, 247602 (2006).
Jo, J. Y. et al. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 99, 267602 (2007).
Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching. J. Phys. Soc. Jpn. 31, 506–510 (1971).
Chang, H. et al. Watching domains grow: In-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. J. Appl. Phys. 110, 052014 (2011).
Alessandri, C., Pandey, P., Abusleme, A. & Seabaugh, A. Switching dynamics of ferroelectric Zr-Doped HfO2. IEEE Electron Device Lett. 39, 1780–1783 (2018).
Parsonnet, E. et al. Toward intrinsic ferroelectric switching in multiferroic BiFeO3. Phys. Rev. Lett. 125, 067601 (2020).
Grigoriev, A., Azad, M. M. & McCampbell, J. Ultrafast electrical measurements of polarization dynamics in ferroelectric thin-film capacitors. Rev. Sci. Instrum. 82, 124704 (2011).
Larsen, P. K., Kampschöer, G. L. M., Ulenaers, M. J. E., Spierings, G. A. C. M. & Cuppens, R. Nanosecond switching of thin ferroelectric films. Appl. Phys. Lett. 59, 611–613 (1991).
Si, M. et al. Ultrafast measurements of polarization switching dynamics on ferroelectric and anti-ferroelectric hafnium zirconium oxide. Appl. Phys. Lett. 115, 072107 (2019).
Bhattacharjee, S., Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Phys. Rev. Lett. 112, 147601 (2014).
Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).
Zhong, W. L., Wang, Y. G., Zhang, P. L. & Qu, B. D. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B 50, 698–703 (1994).
Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988–1991 (1998).
Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395–411 (2002).
Xue, F., Gu, Y., Liang, L., Wang, Y. & Chen, L.-Q. Orientations of low-energy domain walls in perovskites with oxygen octahedral tilts. Phys. Rev. B 90, 220101 (2014).
Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010).
Zhang, J. X. et al. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys. Rev. Lett. 107, 147602 (2011).
Bakaul, S. R. et al. Ferroelectric domain wall motion in freestanding single-crystal complex oxide thin film. Adv. Mater. 32, 1907036 (2020).
Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).
Hong, S. S. et al. Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 3, eaao5173 (2017).
Pesquera, D. et al. Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off. Nat. Commun. 11, 3190 (2020).
Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).
Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).
Guo, R. et al. Continuously controllable photoconductance in freestanding BiFeO 3 by the macroscopic flexoelectric effect. Nat. Commun. 11, 2571 (2020).
Huang, Y.-L. et al. Manipulating magnetoelectric energy landscape in multiferroics. Nat. Commun. 11, 2836 (2020).
Li, S. & Birol, T. Suppressing the ferroelectric switching barrier in hybrid improper ferroelectrics. NPJ Comput. Mater. 6, 1–10 (2020).
Haykal, A. et al. Antiferromagnetic textures in BiFeO3 controlled by strain and electric field. Nat. Commun. 11, 1704 (2020).
Kittel, C. Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965–971 (1946).
Shin, Y.-H., Grinberg, I., Chen, I.-W. & Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007).
Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954).
Winchester, B. et al. Electroelastic fields in artificially created vortex cores in epitaxial BiFeO3 thin films. Appl. Phys. Lett. 107, 052903 (2015).
Lin, F.-Y., Cheng, X., Chen, L.-Q. & Sinnott, S. B. Strain effects on domain structures in ferroelectric thin films from phase-field simulations. J. Am. Ceram. Soc. 101, 4783–4790 (2018).
Nagarajan, V. et al. Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43–47 (2003).
Umantsev, A. Field Theoretic Method in Phase Transformations (Springer-Verlag, 2012).
Peng, R.-C. et al. Understanding and predicting geometrical constraint ferroelectric charged domain walls in a BiFeO3 island via phase-field simulations. Appl. Phys. Lett. 113, 222902 (2018).
Li, Y. L., Hu, S. Y., Liu, Z. K. & Chen, L. Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 81, 427–429 (2002).
Hu, H.-L. & Chen, L.-Q. Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 81, 492–500 (1998).
Nambu, S. & Sagala, D. A. Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50, 5838–5847 (1994).
Tagantsev, A. K. The role of the background dielectric susceptibility in uniaxial ferroelectrics. Ferroelectrics 69, 321–323 (1986).
Tagantsev, A. K. Landau expansion for ferroelectrics: which variable to use? Ferroelectrics 375, 19–27 (2008).
Levanyuk, A. P., Strukov, B. A. & Cano, A. Background dielectric permittivity: Material constant or fitting parameter? Ferroelectrics 503, 94–103 (2016).
Woo, C. H. & Zheng, Y. Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Appl. Phys. A 91, 59–63 (2008).