Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).
Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).
Das, S. et al. Perspective: Emergent topologies in oxide superlattices. APL Mater. 6, 100901 (2018).
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Hsu, S. et al. Emergence of the Vortex State in Confined Ferroelectric Heterostructures. Adv. Mater. 31, 1901014 (2019).
Sun, Y. et al. Subunit cell–level measurement of polarization in an individual polar vortex. Sci. Adv. 5, eaav4355 (2019).
Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).
Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).
Li, Q. et al. Subterahertz collective dynamics of polar vortices. Nature 592, 376–380 (2021).
Hannon, J. P., Trammell, G. T., Blume, M. & Gibbs, D. X-Ray resonance exchange scattering. Phys. Rev. Lett. 61, 1245–1248 (1988).
Dudzik, E. et al. Influence of perpendicular magnetic anisotropy on closure domains studied with x-ray resonant magnetic scattering. Phys. Rev. B 62, 5779–5785 (2000).
Durr, H. A. et al. Chiral magnetic domain structures in ultrathin FePd films. Science 284, 2166–2168 (1999).
Legrand, W. et al. Hybrid chiral domain walls and skyrmions in magnetic multilayers. Sci. Adv. 4, eaat0415 (2018).
Chauleau, J.-Y. et al. Chirality in magnetic multilayers probed by the symmetry and the amplitude of dichroism in X-ray resonant magnetic scattering. Phys. Rev. Lett. 120, 037202 (2018).
Zhang, S. L., van der Laan, G., Wang, W. W., Haghighirad, A. A. & Hesjedal, T. Direct observation of twisted surface skyrmions in bulk crystals. Phys. Rev. Lett. 120, 227202 (2018).
Li, W. et al. Anatomy of skyrmionic textures in magnetic multilayers. Adv. Mater. 31, 1807683 (2019).
Chauleau, J.-Y. et al. Electric and antiferromagnetic chiral textures at multiferroic domain walls. Nat. Mater. 19, 386–390 (2020).
Lovesey, S. W. & van der Laan, G. Resonant X-ray diffraction from chiral electric-polarization structures. Phys. Rev. B 98, 155410 (2018).
Templeton, D. H. & Templeton, L. K. X-ray dichroism and polarized anomalous scattering of the uranyl ion. Acta Cryst. A 38, 62–67 (1982).
Dmitrienko, V. E. Forbidden reflections due to anisotropic X-ray susceptibility of crystals. Acta Crystallogr A Found. Crystallogr. 39, 29–35 (1983).
Blume, M., in Resonant Anomalous X-ray Scattering, (eds Materlick, G., Sparks, C. J. &; Fischer, K.) (Elsevier Science B. V., 1994).
van der Laan, G. Soft X-ray resonant magnetic scattering of magnetic nanostructures. C. R. Phys. 9, 570–584 (2008).
Murakami, Y. et al. Direct observation of charge and orbital ordering in La0.5Sr1.5MnO4. Phys. Rev. Lett. 80, 1932–1935 (1998).
Lovesey, S., Balcar, E., Knight, K. & Fernandezrodriguez, J. Electronic properties of crystalline materials observed in X-ray diffraction. Phys. Rep. 411, 233–289 (2005).
Dmitrienko, V. E., Ishida, K., Kirfel, A. & Ovchinnikova, E. N. Polarization anisotropy of X-ray atomic factors and ‘forbidden’ resonant reflections. Acta Crystallogr A 61, 481–493 (2005).
Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).
Pardini, L., Bellini, V., Manghi, F. & Ambrosch-Draxl, C. First-principles calculation of X-ray dichroic spectra within the full-potential linearized augmented planewave method: an implementation into the Wien2k code. Comput. Phys. Commun. 183, 628–636 (2012).
Fernández-Rodríguez, J., Lovesey, S. W. & Blanco, J. A. Polarization analysis in resonant X-ray Bragg diffraction by K2CrO4 at the Cr K-edge. Phys. Rev. B 77, 094441 (2008).
Parratt, L. G. Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359–369 (1954).
Narayanan, S., Lee, D. R., Guico, R. S., Sinha, S. K. & Wang, J. Real-time evolution of the distribution of nanoparticles in an ultrathin-polymer-film-based waveguide. Phys. Rev. Lett. 94, 145504 (2005).
Lee, D. R. et al. X-ray resonant magnetic scattering from structurally and magnetically rough interfaces in multilayered systems. I. Specular reflectivity. Phys. Rev. B 68, 224409 (2003).
Lee, D. R. et al. X-ray resonant magnetic scattering from structurally and magnetically rough interfaces in multilayered systems. II. Diffus. Scattering. Phys. Rev. B 68, 224410 (2003).
Arenholz, E. et al. Probing ferroelectricity in PbZr 0.2 Ti 0.8 O 3 with polarized soft X rays. Phys. Rev. B 82, 140103 (2010).
Hong, Z. et al. Vortex domain walls in ferroelectrics. Nano Lett. 21, 3533–3539 (2021).
Abid, A. Y. et al. Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nat. Commun. 12, 2054 (2021).
Lang, J. C., Lee, D. R., Haskel, D. & Srajer, G. Imaging spiral magnetic domains in Ho metal using circularly polarized Bragg diffraction. J. Appl. Phys. 95, 6537–6539 (2004).
Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).
Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).
Blaha, P. et al. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), ISBN 3-9501031-1-2 (Techn. Universität, 2019).