Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021). DOI: 10.1103/RevModPhys.93.041002
Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020). DOI: 10.1038/s42254-020-0170-z
Mitrano, M. & Wang, Y. Probing light-driven quantum materials with ultrafast resonant inelastic x-ray scattering. Commun. Phys. 3, 184 (2020). DOI: 10.1038/s42005-020-00447-6
Buzzi, M., Först, M., Mankowsky, R. & Cavalleri, A. Probing dynamics in quantum materials with femtosecond x-rays. Nat. Rev. Phys. 3, 299–311 (2018).
Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016). DOI: 10.1080/00018732.2016.1194044
Zhang, J. & Averitt, R. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014). DOI: 10.1146/annurev-matsci-070813-113258
Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007). DOI: 10.1038/nature06119
Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012). DOI: 10.1103/PhysRevLett.108.136801
Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020). DOI: 10.1038/s41567-020-0936-3
Först, M. et al. Spatially resolved ultrafast magnetic dynamics initiated at a complex oxide heterointerface. Nat. Mater. 14, 883–888 (2015). DOI: 10.1038/nmat4341
Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014). DOI: 10.1126/science.1253493
Manz, S. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat. Photonics 10, 653–656 (2016). DOI: 10.1038/nphoton.2016.146
Stanciu, C. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007). DOI: 10.1103/PhysRevLett.99.047601
Prosandeev, S., Grollier, J., Talbayev, D., Dkhil, B. & Bellaiche, L. Ultrafast neuromorphic dynamics using hidden phases in the prototype of relaxor ferroelectrics. Phys. Rev. Lett. 126, 027602 (2021). DOI: 10.1103/PhysRevLett.126.027602
Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019). DOI: 10.1126/science.aaw4911
Li, J., Strand, H. U., Werner, P. & Eckstein, M. Theory of photoinduced ultrafast switching to a spin-orbital ordered hidden phase. Nat. Commun. 9, 1–7 (2018). DOI: 10.1038/s41467-017-02088-w
Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014). DOI: 10.1126/science.1241591
Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60. Nat. Phys. 17, 611–618 (2021). DOI: 10.1038/s41567-020-01148-1
Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011). DOI: 10.1126/science.1197294
Kennes, D. M., Wilner, E. Y., Reichman, D. R. & Millis, A. J. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017). DOI: 10.1038/nphys4024
Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016). DOI: 10.1038/nature16522
McIver, J. W. et al. Light-induced anomalous hall effect in graphene. Nat. Phys. 16, 38–41 (2019). DOI: 10.1038/s41567-019-0698-y
Sie, E. J. et al. An ultrafast symmetry switch in a weyl semimetal. Nature 565, 61–66 (2019). DOI: 10.1038/s41586-018-0809-4
Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of floquet-bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). DOI: 10.1126/science.1239834
Guo, J. et al. Recent progress in optical control of ferroelectric polarization. Adv. Opt. Mater. 9, 2002146 (2021).
Bilyk, V. et al. Transient polarization reversal using an intense THz pulse in silicon-doped lead germanate. pss (RRL) 15, 2000460 (2020).
Yang, M.-M. & Alexe, M. Light-induced reversible control of ferroelectric polarization in BiFeO3. Adv. Mater. 30, 1704908 (2018). DOI: 10.1002/adma.201704908
Li, T. et al. Optical control of polarization in ferroelectric heterostructures. Nat. Commun. 9, 3344 (2018). DOI: 10.1038/s41467-018-05640-4
Mankowsky, R., von Hoegen, A., Först, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017). DOI: 10.1103/PhysRevLett.118.197601
Grishunin, K. A. et al. THz electric field-induced second harmonic generation in inorganic ferroelectric. Sci. Rep. 7, 15 (2017).
Morimoto, T. et al. Terahertz-field-induced large macroscopic polarization and domain-wall dynamics in an organic molecular dielectric. Phys. Rev. Lett. 118, 107602 (2017).
Chen, F. et al. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3. Phys. Rev. B 94, 180104(R) (2016). DOI: 10.1103/PhysRevB.94.180104
Grübel, S. et al. Ultrafast x-ray diffraction of a ferroelectric soft mode driven by broadband terahertz pulses. Preprint at arXiv 1602.05435 (2016).
Rana, D. S. et al. Understanding the nature of ultrafast polarization dynamics of ferroelectric memory in the multiferroic BiFeO3. Adv. Mater. 21, 2881–2885 (2009). DOI: 10.1002/adma.200802094
Scott, J. F. & de Araujo, C. A. P. Ferroelectric memories. Science 246, 1400–1405 (1989). DOI: 10.1126/science.246.4936.1400
Guo, R. et al. Non-volatile memory based on the ferroelectric photovoltaic effect. Nat. Commun. 4, 1990 (2013). DOI: 10.1038/ncomms2990
Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011). DOI: 10.1038/nphys2055
Subedi, A. Proposal for ultrafast switching of ferroelectrics using midinfrared pulses. Phys. Rev. B 92, 214303 (2015). DOI: 10.1103/PhysRevB.92.214303
Yi, H. T., Choi, T., Choi, S. G., Oh, Y. S. & Cheong, S.-W. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 23, 3403–3407 (2011). DOI: 10.1002/adma.201100805
Mertelj, T. & Kabanov, V. Comment on “ultrafast reversal of the ferroelectric polarization”. Phys. Rev. Lett. 123, 129701 (2019). DOI: 10.1103/PhysRevLett.123.129701
Zhong, W., Vanderbilt, D. & Rabe, K. M. First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO3. Phys. Rev. B 52, 6301–6312 (1995). DOI: 10.1103/PhysRevB.52.6301
Triebwasser, S. Behavior of ferroelectric KNbO3 in the vicinity of the cubic-tetragonal transition. Phys. Rev. 101, 993–997 (1956). DOI: 10.1103/PhysRev.101.993
Hewat, A. W. Cubic-tetragonal-orthorhombic-rhombohedral ferroelectric transitions in perovskite potassium niobate: neutron powder profile refinement of the structures. J. Phys. C: Solid State Phys. 6, 2559–2572 (1973). DOI: 10.1088/0022-3719/6/16/010
Tinte, S., Íñiguez, J., Rabe, K. M. & Vanderbilt, D. Quantitative analysis of the first-principles effective hamiltonian approach to ferroelectric perovskites. Phys. Rev. B 67, 064106 (2003).
Krakauer, H., Yu, R., zhang Wang, C., Rabe, K. & Waghmare, U. Dynamic local distortions in KNbO3. J. Phys.: Condens. Matter 11, 3779–3787 (1999).
Xu, B., Íñiguez, J. & Bellaiche, L. Designing lead-free antiferroelectrics for energy storage. Nat. Commun. 8, 15682 (2017). DOI: 10.1038/ncomms15682
Zhong, W. & Vanderbilt, D. Competing structural instabilities in cubic perovskites. Phys. Rev. Lett. 74, 2587–2590 (1995). DOI: 10.1103/PhysRevLett.74.2587
Sai, N. & Vanderbilt, D. First-principles study of ferroelectric and antiferrodistortive instabilities in tetragonal SrTiO3. Phys. Rev. B 62, 13942–13950 (2000). DOI: 10.1103/PhysRevB.62.13942
Kornev, I. A., Bellaiche, L., Janolin, P.-E., Dkhil, B. & Suard, E. Phase diagram of Pb (Zr, Ti)O3 solutions from first principles. Phys. Rev. Lett. 97, 157601 (2006).
Gu, T. et al. Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Phys. Rev. Lett. 120, 197602 (2018).
Steigerwald, H. et al. Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser. Appl. Phys. Lett. 98, 062902 (2011). DOI: 10.1063/1.3553194
Boes, A. et al. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Appl. Phys. Lett. 103, 142904 (2013). DOI: 10.1063/1.4823702
Hadni, A. & Thomas, R. Localized irreversible thermal switching in ferroelectric TGS by an argon laser. Ferroelectrics 6, 241–245 (1973). DOI: 10.1080/00150197408243974
Abalmasov, V. A. Ultrafast reversal of the ferroelectric polarization by a midinfrared pulse. Phys. Rev. B 101, 014102 (2020).
Martin, S., Baboux, N., Albertini, D. & Gautier, B. A new technique based on current measurement for nanoscale ferroelectricity assessment: nano-positive up negative down. Rev. Sci. Instrum. 88, 023901 (2017). DOI: 10.1063/1.4974953
Qi, T., Shin, Y.-H., Yeh, K.-L., Nelson, K. A. & Rappe, A. M. Collective coherent control: synchronization of polarization in Ferroelectric PbTiO3 by shaped THz fields. Phys. Rev. Lett. 102, 247603 (2009).
Wang, C.-Z., Yu, R. & Krakauer, H. Polarization dependence of born effective charge and dielectric constant in KNbO3. Phys. Rev. B 54, 11161–11168 (1996). DOI: 10.1103/PhysRevB.54.11161
Hukushima, K. & Nemoto, K. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604–1608 (1996). DOI: 10.1143/JPSJ.65.1604
Katzgraber, H. G., Trebst, S., Huse, D. A. & Troyer, M. Feedback-optimized parallel tempering Monte Carlo. J. Stat. Mech: Theory Exp. 2006, P03018–P03018 (2006). DOI: 10.1088/1742-5468/2006/03/P03018
Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984). DOI: 10.1080/00268978400101201
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984). DOI: 10.1063/1.447334
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985). DOI: 10.1103/PhysRevA.31.1695
Chen, P., Zhao, H., Artyukhin, S. & Bellaiche, L. LINVARIANT: v1.0. https://doi.org/10.5281/zenodo.5951858 (2022).