Post-deposition annealing and interfacial atomic layer deposition buffer layers of Sb2Se3/CdS stacks for reduced interface recombination and increased open-circuit voltages
WEISS, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Minguez-Bacho, Minguez-Bacho; Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander University of Erlangen- Nurnberg, Erlangen, Germany
ZUCCALA, Elena ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
MELCHIORRE, Michele ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Valle, Nathalie; Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
El Adib, Brahime; Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
Yokosawa, Tadahiro; Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander University Erlangen- Nürnberg,
Spiecker; Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander University Erlangen- Nürnberg,
Bachmann, Julien; 4Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander University of Erlangen- Nurnberg
DALE, Phillip ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
SIEBENTRITT, Susanne ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
Post-deposition annealing and interfacial atomic layer deposition buffer layers of Sb2Se3/CdS stacks for reduced interface recombination and increased open-circuit voltages
Publication date :
2022
Journal title :
Progress in Photovoltaics
ISSN :
1062-7995
eISSN :
1099-159X
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
Hertwich EG, de Larderel JA, Arvesen A, et al. (Eds). Green Energy Choices: The Benefits, Risks and Trade-Offs of Low-Carbon Technologies for Electricity Production. UNEP; 2016.
de Wild-Scholten MJ. Energy payback time and carbon footprint of commercial photovoltaic systems. Solar Energy Mater Solar Cells. 2013;119:296-305.
Weiss TP, Arnou P, Melchiorre M, et al. Thin-film (Sb,Bi)2Se3 Semiconducting Layers with Tunable Band Gaps Below 1 eV for Photovoltaic Applications. Phys Rev Appl. 2020;14(2):024014.
Kondrotas R, Chen C, Tang J. Sb2S3 solar cells. Joule. 2018;2(5):857-878.
Shockley W, Queisser HJ. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys. 1961;32(3):510-519.
Kirchartz T, Rau U. What makes a good solar cell? Adv Energy Mater. 2018;8(28):1703385.
Bremner SP, Levy MY, Honsberg CB. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog Photovolt: Res Appl. 2008;16(3):225-233.
Li Z, Liang X, Li G, et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat Commun. 2019;10(1):125.
Wang X, Tang R, Jiang C, et al. Manipulating the electrical properties of Sb2(S,Se)3 film for high-efficiency solar cell. Adv Energy Mater. 2020;10(40):2002341.
Chen C, Tang J. Open-circuit voltage loss of antimony chalcogenide solar cells: status, origin, and possible solutions. ACS Energy Lett. 2020;5(7):2294-2304.
Hutter OS, Phillips LJ, Durose K, Major JD. 6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer. Solar Energy Mater Solar Cells. 2018;188:177-181.
Hu X, Tao J, Chen S, et al. Improving the efficiency of Sb2Se3 thin-film solar cells by post annealing treatment in vacuum condition. Solar Energy Mater Solar Cells. 2018;187:170-175.
Guo H, Chen Z, Wang X, et al. Enhancement in the efficiency of Sb2Se3 thin-film solar cells by increasing carrier concertation and inducing columnar growth of the grains. Solar RRL. 2019;3(3):1800224.
Leng M, Luo M, Chen C, et al. Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl Phys Lett. 2014;105(8):083905.
Kumar V, Artegiani E, Kumar A, Mariotto G, Piccinelli F, Romeo A. Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3 based solar cells by thermal evaporation. Solar Energy. 2019;193:452-457.
Liu X, Xiao X, Yang Y, et al. Enhanced Sb2Se3 solar cell performance through theory-guided defect control. Prog Photovolt: Res Appl. 2017;25(10):861-870.
Ma C, Guo H, Wang X, et al. Fabrication of Sb2Se3 thin film solar cells by co-sputtering of Sb2Se3 and Se targets. Solar Energy. 2019;193:275-282.
Ou C, Shen K, Li Z, Zhu H, Huang T, Mai Y. Bandgap tunable CdS:O as efficient electron buffer layer for high-performance Sb2Se3 thin film solar cells. Solar Energy Mater Solar Cells. 2019;194:47-53.
Phillips LJ, Savory CN, Hutter OS, et al. Current enhancement via a TiO2 window layer for CSS Sb2Se3 solar cells: performance limits and high Voc. IEEE J Photovolt. 2019;9(2):544-551.
Shen K, Ou C, Huang T, et al. Mechanisms and modification of nonlinear shunt leakage in Sb2Se3 thin film solar cells. Solar Energy Mater Solar Cells. 2018;186:58-65.
Wang L, Li DB, Li K, et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat Energy. 2017;2(4):1-9.
Wang X, Guo H, Chen Z, et al. Enhancement of Sb2Se3 thin-film solar cell photoelectric properties by addition of interlayer CeO2. Solar Energy. 2019;188:218-223.
Wen X, Chen C, Lu S, et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat Commun. 2018;9(1):1-12.
Shiel H, Hutter OS, Phillips LJ, et al. Chemical etching of Sb2Se3 solar cells: surface chemistry and back contact behaviour. J Phys Energy. 2019;1(4):045001.
Zhou Y, Wang L, Chen S, et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat Photon. 2015;9(6):409-415.
Tao J, Hu X, Guo Y, et al. Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells. Nano Energy. 2019;60:802-809.
Li K, Wang S, Chen C, et al. 7.5% n-i-p Sb2Se3 solar cells with CuSCN as a hole-transport layer. J Mater Chem A. 2019;7(16):9665-9672.
Chen C, Wang L, Gao L, et al. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2017;2(9):2125-2132.
Li DB, Yin X, Grice CR, et al. Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation. Nano Energy. 2018;49:346-353.
Chen C, Li K, Chen S, et al. Efficiency improvement of Sb2Se3 solar cells via grain boundary inversion. ACS Energy Lett. 2018;3(10):2335-2341.
Hobson TDC, Phillips LJ, Hutter OS, et al. Isotype heterojunction solar cells using n-type Sb2Se3 thin films. Chem Mater. 2020;32(6):2621-2630.
Wang L, Luo M, Qin S, et al. Ambient CdCl2 treatment on CdS buffer layer for improved performance of Sb2Se3 thin film photovoltaics. Appl Phys Lett. 2015;107(14):143902.
Hobson TDC, Phillips LJ, Hutter OS, Durose K, Major JD. Defect properties of Sb2Se3 thin film solar cells and bulk crystals. Appl Phys Lett. 2020;116(26):261101.
Yao S, Wang J, Cheng J, et al. Improved performance of thermally evaporated Sb2Se3 thin-film solar cells via substrate-cooling-speed control and hydrogen-sulfide treatment. ACS Appl Mater Interfaces. 2020;12(21):24112-24124.
Ma Y, Tang B, Lian W, et al. Efficient defect passivation of Sb2Se3 film by tellurium doping for high performance solar cells. J Mater Chem A. 2020;8(14):6510-6516.
Shen K, Zhang Y, Wang X, et al. Efficient and stable planar n–i–p Sb2Se3 solar cells enabled by oriented 1D trigonal selenium structures. Adv Sci. 2020;7(16):2001013.
Chen C, Liu X, Li K, et al. High-efficient Sb2Se3 solar cell using ZnxCd1-xS n-type layer. Appl Phys Lett. 2021;118(17):172103.
Guo H, Du X, Feng Z, et al. Efficiency enhancement of Sb2Se3 solar cells based on electron beam evaporation CdS film with variable deposition temperature. Solar Energy. 2021;224:875-882.
Cheng C-H, Li M, Song H-Q, et al. Enhanced performance of the Sb2Se3 thin-film solar cell by organic molecule-induced crystallization and suppression of the Interface recombination. ACS Appl Energy Mater. 2021;4(5):5079-5085.
Leng M, Chen C, Xue D-J, et al. Sb2Se3 solar cells employing metal-organic solution coated CdS buffer layer. Solar Energy Mater Solar Cells. 2021;225:111043.
Wen X, Lu Z, Wang G-C, Washington MA, Lu T-M. Efficient and stable flexible Sb2Se3 thin film solar cells enabled by an epitaxial CdS buffer layer. Nano Energy. 2021;85:106019.
Zhang J, Guo H, Jia X, et al. Improving the performance of Sb2Se3 thin-film solar cells using n-type MoO3 as the back contact layer. Solar Energy. 2021;214:231-238.
Guo L, Vijayaraghavan SN, Duan X, et al. Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer. Solar Energy. 2021;218:525-531.
Liu D, Tang R, Ma Y, et al. Direct hydrothermal deposition of antimony triselenide films for efficient planar heterojunction solar cells. ACS Appl Mater Interfaces. 2021;13(16):18856-18864.
Lee D, Cho JY, Heo J. Improved efficiency of Sb2Se3/CdS thin-film solar cells: the effect of low-temperature pre-annealing of the absorbers. Solar Energy. 2018;173:1073-1079.
Li Z, Chen X, Zhu H, et al. Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Solar Energy Mater Solar Cells. 2017;161:190-196.
Li G, Li Z, Liang X, Guo C, Shen K, Mai Y. Improvement in Sb2Se3 solar cell efficiency through band alignment engineering at the buffer/absorber Interface. ACS Appl Mater Interfaces. 2019;11(1):828-834.
Liu X, Chen J, Luo M, et al. Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl Mater Interfaces. 2014;6(13):10687-10695.
Luo YD, Tang R, Chen S, et al. An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells. Chem Eng J. 2020;393:124599.
Tang R, Zheng ZH, Su ZH, et al. Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film. Nano Energy. 2019;64:103929.
Tiwari KJ, Neuschitzer M, Espíndola M, Sanchez Y, Vidal P, Saucedo E, Malar P. Tailoring doping of efficient Sb2Se3 solar cells in substrate configuration by low temperature post deposition selenization process. in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018—A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC; 2018.
Liang GX, Luo YD, Chen S, et al. Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV. Nano Energy. 2020;73:104806.
Vidal-Fuentes P, Placidi M, Sánchez Y, et al. Efficient Se-rich Sb2Se3/CdS planar heterojunction solar cells by sequential processing: control and influence of Se content. Solar RRL. 2020;4(7):2000141.
Rijal S, Li D-B, Awni RA, Bista SS, Song Z, Yan Y. Influence of post-selenization temperature on the performance of substrate-type Sb2Se3 solar cells. ACS Appl Energy Mater. 2021;4(5):4313-4318.
Liu T, Liang X, Liu Y, et al. Conduction band energy-level engineering for improving open-circuit voltage in antimony selenide nanorod array solar cells. Adv Sci. 2021;2100868.
Liu X, Qiao Y, Liu Y, et al. Enhanced open circuit voltage of Sb2Se3/CdS solar cells by annealing Se-rich amorphous Sb2Se3 films prepared via sputtering process. Solar Energy. 2020;195:697-702.
Liang X, Guo C, Liu T, et al. Crystallographic orientation control of 1D Sb2Se3 nanorod arrays for photovoltaic application by in situ back-contact engineering. Solar RRL. 2020;2000294.
Büttner P, Scheler F, Pointer C, et al. ZnS ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics. ACS Appl Mater Interfaces. 2021;13(10):11861-11868.
Pointer C, Büttner P, Scheler F, et al. Elucidating mechanistic details of photo-induced charge transfer in antimony sulfide-based p-i-n junctions. J Phys Chem C. 2021;125(33):18429-18437.
Regesch D, Gütay L, Larsen JK, et al. Degradation and passivation of CuInSe2. Appl Phys Lett. 2012;101:112108.
Contreras MA, Romero MJ, B. To, et al. Optimization of CBD CdS process in high-efficiency Cu (In,Ga)Se2-based solar cells. Thin Solid Films. 2002;403-404:204-211.
Babbe F, Choubrac L, Siebentritt S, et al. Quasi Fermi level splitting of Cu-rich and Cu-poor Cu(In,Ga)Se2 absorber layers. Appl Phys Lett. 2016;109(8):082105.
Burgers AR, Eikelboom JA, Schonecker A, Sinke WC. Improved treatment of the strongly varying slope in fitting solar cell I–V curves. In: Conference Record of the IEEE Photovoltaic Specialists Conference; 1996.
Scheer R, Schock HW. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Wiley-VCH Verlag & Co. KGaA; 2011.
Birkett M, Linhart WM, Stoner J, et al. Band gap temperature-dependence of close-space sublimation grown Sb2Se3 by photo-reflectance. APL Mater. 2018;6(8):084901.
De Wolf S, Holovsky J, Moon S-J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett. 2014;5(6):1035-1039.
Wolter MH, Carron R, Avancini E, et al. How band tail recombination influences the open-circuit voltage of solar cells. Prog Photovolt: Res Appl. 2021;30(7):702-712.
Rau U, Blank B, Müller TCM, Kirchartz T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys Rev Appl. 2017;7(4):044016.
Ross RT. Some thermodynamics of photochemical systems. J Chem Phys. 1967;46(12):4590-4593.
Kimerling LC. Influence of deep traps on the measurement of free-carrier distributions in semiconductors by junction capacitance techniques. J Appl Phys. 1974;45(4):1839-1845.
Sood M, Aleksander U, Boumenou CK, et al. Near Surface Defects: Cause of Deficit Between Internal and External Open-Circuit Voltage in Solar Cells. (in revision), 2021.
Brian JS, Helen JM, Sudhajit M, Christos F, Phillip JD, Michael AS. Laser processing for thin film chalcogenide photovoltaics: a review and prospectus. J Photon Energy. 2015;5(1):1-20.
Williams RE, Ramasse QM, McKenna KP, et al. Evidence for self-healing benign grain boundaries and a highly defective Sb2Se3–CdS interfacial layer in Sb2Se3 thin-film photovoltaics. ACS Appl Mater Interfaces. 2020;12(19):21730-21738.
Chirilă A, Reinhard P, Pianezzi F, et al. Potassium-induced surface modification of Cu (In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater. 2013;12:1107-1111.
Harikesh PC, Surendran A, Ghosh B, et al. Cubic NaSbS2 as an ionic–electronic coupled semiconductor for switchable photovoltaic and neuromorphic device applications. Adv Mater. 2020;32(7):1906976.
Soni P, Raghuwanshi M, Wuerz R, et al. Role of elemental intermixing at the In2S3/CIGSe heterojunction deposited using reactive RF magnetron sputtering. Solar Energy Mater Solar Cells. 2019;195:367-375.
Scheer R. Activation energy of heterojunction diode currents in the limit of interface recombination. J Appl Phys. 2009;105:104505.
Niemegeers A, Burgelman M. Numerical modelling of ac-characteristics of CdTe and CIS solar cells. In: Conference Record of the IEEE Photovoltaic Specialists Conference; 1996.