[en] Liquid Crystal Elastomers (LCEs) are an exciting category of material that has tremendous application potential across a variety of fields, owing to their unique properties that enable both sensing and actuation. To some, LCEs are simply another type of Shape Memory Polymer, while to others they are an interesting on-going scientific experiment. In this visionary article, we bring an interdisciplinary discussion around creative and impactful ways that LCEs can be applied in the Built Environment to support kinematic and kinetic buildings and situational awareness. We focus particularly on the autonomy made possible by using LCEs, potentially removing needs for motors, wiring and tubing, and even enabling fully independent operation in response to natural environment variations, requiring no power sources. To illustrate the potential, we propose a number of concrete application scenarios where LCEs could offer innovative solutions to problems of great societal importance, such as autonomous active ventilation, heliotropic solar panel systems which can also remove snow or sand autonomously, and invisible coatings with strain mapping functionality, alerting residents in case of dangerous (static or dynamic) loads on roofs or windows, as well as assisting building safety inspection teams after earthquakes.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres Physique Architecture Science des matériaux & ingénierie
Auteur, co-auteur :
Schwartz, Mathew; New Jersey Institute of Technology
LAGERWALL, Jan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Embedding intelligence in materials for responsive built environment: A topical review on Liquid Crystal Elastomer actuators and sensors
Date de publication/diffusion :
18 octobre 2022
Titre du périodique :
Building and Environment
ISSN :
0360-1323
eISSN :
1873-684X
Maison d'édition :
Elsevier, Oxford, Royaume-Uni
Volume/Tome :
226
Pagination :
109714
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Physics and Materials Science
Projet européen :
H2020 - 648763 - INTERACT - Intelligent Non-woven Textiles and Elastomeric Responsive materials by Advancing liquid Crystal Technology
Ko, H., Javey, A., Smart actuators and adhesives for reconfigurable matter. Acc. Chem. Res. 50:4 (2017), 691–702.
Zeng, H., Wasylczyk, P., Wiersma, D.S., Priimagi, A., Light robots: Bridging the gap between microrobotics and photomechanics in soft materials. Adv. Mater., 2017.
Hines, L., Petersen, K., Lum, G.Z., Sitti, M., Soft actuators for small-scale robotics. Adv. Mater., 29(13), 2017.
Iamsaard, S, Villemin, E, Lancia, F, A?hoff, SJ, Fletcher, SP, Katsonis, N, Preparation of biomimetic photoresponsive polymer springs. Nat. Protoc. 11:10 (2016), 1788–1797.
Yang, Dian, Verma, Mohit S., So, Ju-Hee, Mosadegh, Bobak, Keplinger, Christoph, Lee, Benjamin, Khashai, Fatemeh, Lossner, Elton, Suo, Zhigang, Whitesides, George M., Buckling pneumatic linear actuators inspired by muscle. Adv. Mater. Technol., 1(3), 2016, 1600055.
White, T.J., Broer, D.J., Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Mater. 14:11 (2015), 1087–1098.
Jiang, Hongrui, Li, Chensha, Huang, Xuezhen, Actuators based on liquid crystalline elastomer materials. Nanoscale 5:12 (2013), 5225–5240.
Doumpioti, Christina, Greenberg, Evan L, Karatzas, Konstantinos, Embedded intelligence: Material responsiveness in façade systems. ACADIA 10: LIFE in:Formation, on Responsive Information and Variations in Architecture, 2010, ACADIA, 258–262.
Grosberg, A. I?U., Khokhlov, A.R., Gennes, Pierre-Gilles de, Giant Molecules. 2011, World Scientific, 322.
Lagerwall, Jan P.F., Scalia, G., A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 12:6 (2012), 1387–1412.
Ohm, C., Brehmer, M., Zentel, R., Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22:31 (2010), 3366–3387.
Fleischmann, E.K., Zentel, R., Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew. Chem. Int. Ed. 52:34 (2013), 8810–8827.
Thomsen, Dl, Keller, Patrick, Naciri, J, Pink, R, Jeon, H, Shenoy, D, Ratna, Br, Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34:17 (2001), 5868–5875.
Yakacki, C.M., Saed, M., Nair, D.P., Gong, T., Reed, S.M., Bowman, C.N., Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Adv. 5:25 (2015), 18997–19001.
Shaha, Rajib K., Torbati, Amir H., Frick, Carl P., Body-temperature shape-shifting liquid crystal elastomers. J. Appl. Polym. Sci., 138(14), 2021, 50136.
Yamada, M, Kondo, M, Mamiya, JI, Yu, YL, Kinoshita, M, Barrett, C, Ikeda, T, Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem., Int. Ed. 47:27 (2008), 4986–4988.
Kohlmeyer, R., Chen, Jian, Wavelength-selective, IR light-driven hinges based on liquid crystalline elastomer composites. Angew. Chem., Int. Ed. 52:35 (2013), 9234–9237.
de Haan, Laurens T, Verjans, Julien MN, Broer, Dirk J, Bastiaansen, Cees WM, Schenning, Albertus PHJ, Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J. Am. Chem. Soc. 136:30 (2014), 10585–10588.
Liu, Danqing, Tito, Nicholas B., Broer, Dirk J., Protruding organic surfaces triggered by in-plane electric fields. Nature Commun., 8(1), 2017, 1526.
Küpfer, J., Finkelmann, H., Nematic liquid single crystal elastomers. Die Makromolekulare Chemie 12 (1991), 717–726.
Yu, Yl, Nakano, M., Ikeda, T., Directed bending of a polymer film by light - miniaturizing a simple photomechanical system could expand its range of applications. Nature, 425(6954), 2003, 145.
Camacho-Lopez, M, Finkelmann, Heino, Palffy-Muhoray, P, Shelley, M, Fast liquid-crystal elastomer swims into the dark. Nature Mater. 3:5 (2004), 307–310.
van Oosten, L., Bastiaansen, W.M., Broer, J., Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8:8 (2009), 677–682.
de Haan, LT, Sánchez-Somolinos, C, Bastiaansen, CM, Schenning, AP, Broer, DJ, Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem. Int. Ed. 51:50 (2012), 12469–12472.
McConney, ME, Martinez, A, Tondiglia, VP, Lee, KM, Langley, D, Smalyukh, II, White, TJ, Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv. Mater. 25:41 (2013), 5880–5885.
Iamsaard, S, Aßhoff, SJ, Matt, B, Kudernac, T, Cornelissen, JJ, Fletcher, SP, Katsonis, N, Conversion of light into macroscopic helical motion. Nature Chem. 6:3 (2014), 229–235.
de Haan, Laurens T., Gimenez-Pinto, Vianney, Konya, Andrew, Nguyen, Thanh-Son, Verjans, Julien M.N., Sánchez-Somolinos, Carlos, Selinger, Jonathan V., Selinger, Robin L.B., Broer, Dirk J., Schenning, Albertus P.H.J., Accordion-like actuators of multiple 3D patterned liquid crystal polymer films. Adv. Funct. Mater. 24:9 (2014), 1251–1258.
Geng, Yong, Almeida, Pedro Lucio, Fernandes, Susete Nogueira, Cheng, Cheng, Palffy-Muhoray, Peter, Godinho, Maria Helena, A cellulose liquid crystal motor: a steam engine of the second kind. Sci. Rep., 3, 2013, 1028.
Ohm, Christian, Kapernaum, Nadia, Nonnenmacher, Dorothee, Giesselmann, Frank, Serra, Christophe, Zentel, Rudolf, Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J. Am. Chem. Soc. 133:14 (2011), 5305–5311.
Kim, Hyun, Lee, Jae Ah, Ambulo, Cedric P., Lee, Ha Beom, Kim, Shi Hyeong, Naik, Vinay V., Haines, Carter S., Aliev, Ali E., Ovalle-Robles, Raquel, Baughman, Ray H., Ware, Taylor H., Intelligently actuating liquid crystal elastomer-carbon nanotube composites. Adv. Funct. Mater., 29(48), 2019, 1905063.
Roach, Devin J, Kuang, Xiao, Yuan, Chao, Chen, Kaijuan, Qi, H Jerry, Novel ink for ambient condition printing of liquid crystal elastomers for 4D printing. Smart Mater. Struct., 27(12), 2018, 125011.
Roach, Devin J., Yuan, Chao, Kuang, Xiao, Li, Vincent Chi-Fung, Blake, Peter, Romero, Marta Lechuga, Hammel, Irene, Yu, Kai, Qi, H. Jerry, Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles. ACS Appl. Mater. Interf. 11:21 (2019), 19514–19521.
Lin, X., Saed, M.O., Terentjev, E.M., Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup. Soft Matter 17:21 (2021), 5436–5443.
Huang, Y.Y., Biggins, J., Ji, Y., Terentjev, E.M., Mechanical bistability in liquid crystal elastomer-wire composite actuators. J. Appl. Phys., 107(8), 2010, 083515.
Decker, Martina, Soft robotics and emergent materials in architecture. Real Time - Proceedings of the 33rd ECAADe Conference, Vol. 2, 2015, eCAADe, 409–416.
Sayyah, Arash, Horenstein, Mark N., Mazumder, Malay K., Energy yield loss caused by dust deposition on photovoltaic panels. Sol. Energy 107 (2014), 576–604.
Feng, W, Broer, DJ, Grebikova, L, Padberg, C, Vancso, JG, Liu, D, Static and dynamic control of fingerprint landscapes of liquid crystal network coatings. ACS Appl. Mater. Interfaces 12:5 (2020), 5265–5273.
Feng, W., Broer, D.J., Liu, D., Oscillating chiral-nematic fingerprints wipe away dust. Adv. Mater., 30(11), 2018, 1704970.
Wu, ZL, Wei, R, Buguin, A, Taulemesse, JM, Le Moigne, N, Bergeret, A, Wang, X, Keller, P, Stimuli-responsive topological change of microstructured surfaces and the resultant variations of wetting properties. ACS Appl. Mater. Interfaces 5:15 (2013), 7485–7491.
Farre-Kaga, Hiro J., Saed, Mohand O., Terentjev, Eugene M., Dynamic pressure sensitive adhesion in nematic phase of liquid crystal elastomers. Adv. Funct. Mater., 32(12), 2022, 2110190.
Zakirullin, R.S., Smart window with grating optical filter: Comparison with smart windows fully coated with chromogenic layer. Build. Environ., 219, 2022, 109258.
Wang, Pengcheng, Liu, Zhongbing, Zhang, Xiaoyang, Zhang, Hangming, Chen, Xi, Zhang, Ling, Adaptive building roof combining variable transparency shape-stabilized phase change material: Application potential and adaptability in different climate zones. Build. Environ., 222, 2022, 109436.
Gonçalves, Margarida, Novais, Rui M., Senff, Luciano, Carvalheiras, João, Labrincha, João A., PCM-containing bi-layered alkali-activated materials: A novel and sustainable route to regulate the temperature and humidity fluctuations inside buildings. Build. Environ., 205, 2021, 108281.
Guo, Xin, Wei, Haibin, He, Xiao, He, Miao, Yang, Dong, Integrating phase change material in building envelopes combined with the earth-to-air heat exchanger for indoor thermal environment regulation. Build. Environ., 221, 2022, 109318.
Wang, Mei, Liu, Peng, Shang, Shiyue, Chen, Qian, Zhang, Bo, Liu, Lang, Numerical and experimental studies on the cooling performance of backfill containing phase change materials. Build. Environ., 218, 2022, 109155.
Schwartz, Mathew, Lenzini, Gabriele, Geng, Yong, Rønne, Peter B, Ryan, Peter YA, Lagerwall, Jan PF, Cholesteric liquid crystal shells as enabling material for information-rich design and architecture. Adv. Mater., 30(30), 2018, 1707382.
Zeng, H, Wani, OM, Wasylczyk, P, Kaczmarek, R, Priimagi, A, Self-regulating iris based on light-actuated liquid crystal elastomer. Adv. Mater., 29(30), 2017.
Park, Daekwon, Kim, Philseok, Alvarenga, Jack, Jin, Keojin, Aizenberg, Joanna, Bechthold, Martin, Dynamic daylight control system implementing thin cast arrays of polydimethylsiloxane-based millimeter-scale transparent louvers. Build. Environ. 82 (2014), 87–96.
Li, Robin, Schwartz, Mathew, Dynamic Visualization and Simulation of Vertical And Horizontal Integrated Glare Control Blade System. 2011, University of Michigan Cyberinfrastructure (CI) Days.
RG Egres Jr., Y.S. Lee, J.E. Kirkwood, K.M. Kirkwood, E.D. Wetzel, N.J. Wagner, Liquid armor: protective fabrics utilizing shear thickening fluids, in: Proceedings of the 4th International Conference of Safety and Protective Fabrics, Pittsburg, PA, 2004.
Siopa, D, El Hajraoui, K, Tombolato, S, Babbe, F, Lomuscio, A, Wolter, MH, Anacleto, P, Abderrafi, K, Deepak, FL, Sadewasser, S, Dale, PJ, Micro-sized thin-film solar cells via area-selective electrochemical deposition for concentrator photovoltaics application. Sci. Rep., 10(1), 2020, 14763.
Li, Chensha, Liu, Ye, Huang, Xuezhen, Jiang, Hongrui, Direct sun-driven artificial heliotropism for solar energy harvesting based on a photo-thermomechanical liquid-crystal elastomer nanocomposite. Adv. Funct. Mater. 22:24 (2012), 5166–5174.
Boott, Charlotte E., Tran, Andy, Hamad, Wadood Y., MacLachlan, Mark J., Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem., Int. Ed. 59:1 (2020), 226–231.
Wu, Tianhang, Li, Jiada, Li, Juntao, Ye, Simin, Wei, Jie, Guo, Jinbao, A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. J. Mater. Chem. C 4:41 (2016), 9687–9696.
Parker, RM, Guidetti, G, Williams, CA, Zhao, T, Narkevicius, A, Vignolini, S, Frka-Petesic, B, The self-assembly of cellulose nanocrystals: Hierarchical design of visual appearance. Adv. Mater., 30(19), 2017, 1704477.
Kawamoto, Hirohisa, The history of liquid-crystal display and its industry. 2012 Third IEEE History of ELectro-Technology Conference, HISTELCON, 2012, IEEE, 1–6.