[en] We introduce a nanomechanical platform for fast and sensitive measurements of the spectrally resolved optical dielectric function of 2D materials. At the heart of our approach is a suspended 2D material integrated into a high Q silicon nitride nanomechanical resonator illuminated by a wavelength-tunable laser source. From the heating-related frequency shift of the resonator as well as its optical reflection measured as a function of photon energy, we obtain the real and imaginary parts of the dielectric function. Our measurements are unaffected by substrate-related screening and do not require any assumptions on the underling optical constants. This fast ($\tau$rise∼135 ns), sensitive (noise-equivalent power = 90 pW/√Hz), and broadband (1.2-3.1 eV, extendable to UV-THz) method provides an attractive alternative to spectroscopic or ellipsometric characterization techniques.
Disciplines :
Physics
Author, co-author :
Kirchhof, Jan N.
Yu, Yuefeng
Antheaume, Gabriel
GORDEEV, Georgy ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Yagodkin, Denis
Elliott, Peter
De Araújo, Daniel B.
Sharma, Sangeeta
Reich, Stephanie
Bolotin, Kirill I.
External co-authors :
yes
Language :
English
Title :
Nanomechanical Spectroscopy of 2D Materials
Publication date :
2022
Journal title :
Nano Letters
ISSN :
1530-6984
eISSN :
1530-6992
Publisher :
American Chemical Society, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Liu, H. L.; Shen, C. C.; Su, S. H.; Hsu, C. L.; Li, M. Y.; Li, L. J. Optical Properties of Monolayer Transition Metal Dichalcogenides Probed by Spectroscopic Ellipsometry. Appl. Phys. Lett. 2014, 105 (20), 201905, 10.1063/1.4901836
Li, W.; Birdwell, A. G.; Amani, M.; Burke, R. A.; Ling, X.; Lee, Y. H.; Liang, X.; Peng, L.; Richter, C. A.; Kong, J.; Gundlach, D. J.; Nguyen, N. V. Broadband Optical Properties of Large-Area Monolayer CVD Molybdenum Disulfide. Phys. Rev. B-Condens. Matter Mater. Phys. 2014, 90 (19), 195434, 10.1103/PhysRevB.90.195434
Yim, C.; O'Brien, M.; McEvoy, N.; Winters, S.; Mirza, I.; Lunney, J. G.; Duesberg, G. S. Investigation of the Optical Properties of MoS2 Thin Films Using Spectroscopic Ellipsometry. Appl. Phys. Lett. 2014, 104 (10), 103114, 10.1063/1.4868108
Shen, C. C.; Hsu, Y. Te; Li, L. J.; Liu, H. L. Charge Dynamics and Electronic Structures of Monolayer MoS2 Films Grown by Chemical Vapor Deposition. Appl. Phys. Express 2013, 6 (12), 125801, 10.7567/APEX.6.125801
Hecht, E. Optics, 4 th ed.; Addison-Wesley, San Francisco, CA, 2002; pp 426-428.
Li, Y.; Chernikov, A.; Zhang, X.; Rigosi, A.; Hill, H. M.; Van Der Zande, A. M.; Chenet, D. A.; Shih, E. M.; Hone, J.; Heinz, T. F. Measurement of the Optical Dielectric Function of Monolayer Transition-Metal Dichalcogenides: MoS2, Mo S E2, WS2, and WS E2. Phys. Rev. B-Condens. Matter Mater. Phys. 2014, 90 (20), 205422, 10.1103/PhysRevB.90.205422
de L. Kronig, R. On the Theory of Dispersion of X-Rays. J. Opt. Soc. Am. 1926, 12 (6), 547, 10.1364/JOSA.12.000547
Kramers, H. A. The Quantum Theory of Dispersion. Nature; Nature Publishing Group, 1924; pp 310-311.
Kuzmenko, A. B. Kramers-Kronig Constrained Variational Analysis of Optical Spectra. Rev. Sci. Instrum. 2005, 76 (8), 083108, 10.1063/1.1979470
Ma, L.; Nguyen, P. X.; Wang, Z.; Zeng, Y.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Mak, K. F.; Shan, J. Strongly Correlated Excitonic Insulator in Atomic Double Layers. Nature 2021, 598 (7882), 585-589, 10.1038/s41586-021-03947-9
Zhou, Y.; Sung, J.; Brutschea, E.; Esterlis, I.; Wang, Y.; Scuri, G.; Gelly, R. J.; Heo, H.; Taniguchi, T.; Watanabe, K.; Zaránd, G.; Lukin, M. D.; Kim, P.; Demler, E.; Park, H. Bilayer Wigner Crystals in a Transition Metal Dichalcogenide Heterostructure. Nature 2021, 595 (7865), 48-52, 10.1038/s41586-021-03560-w
Zarenia, M.; Neilson, D.; Partoens, B.; Peeters, F. M. Wigner Crystallization in Transition Metal Dichalcogenides: A New Approach to Correlation Energy. Phys. Rev. B 2017, 95 (11), 115438, 10.1103/PhysRevB.95.115438
Wang, Z.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Evidence of High-Temperature Exciton Condensation in Two-Dimensional Atomic Double Layers. Nature 2019, 574 (7776), 76-80, 10.1038/s41586-019-1591-7
Tartakovskii, A. Excitons in 2D Heterostructures. Nature Reviews Physics 2020, 2, 8-9, 10.1038/s42254-019-0136-1
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and van Der Waals Heterostructures. Science 2016, 353 (6298), na, 10.1126/science.aac9439
Stier, A. V.; Wilson, N. P.; Velizhanin, K. A.; Kono, J.; Xu, X.; Crooker, S. A. Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor. Phys. Rev. Lett. 2018, 120 (5), 057405, 10.1103/PhysRevLett.120.057405
Noori, Y. J.; Cao, Y.; Roberts, J.; Woodhead, C.; Bernardo-Gavito, R.; Tovee, P.; Young, R. J. Photonic Crystals for Enhanced Light Extraction from 2D Materials. ACS Photonics 2016, 3 (12), 2515-2520, 10.1021/acsphotonics.6b00779
Kirchhof, J. N.; Weinel, K.; Heeg, S.; Deinhart, V.; Kovalchuk, S.; Höflich, K.; Bolotin, K. I. Tunable Graphene Phononic Crystal. Nano Lett. 2021, 21 (5), 2174-2182, 10.1021/acs.nanolett.0c04986
Barnes, J. R.; Stephenson, R. J.; Welland, M. E.; Gerber, C.; Gimzewski, J. K. Photothermal Spectroscopy with Femtojoule Sensitivity Using a Micromechanical Device. Nature 1994, 372 (6501), 79-81, 10.1038/372079a0
Casci Ceccacci, A.; Cagliani, A.; Marizza, P.; Schmid, S.; Boisen, A. Thin Film Analysis by Nanomechanical Infrared Spectroscopy. ACS Omega 2019, 4 (4), 7628-7635, 10.1021/acsomega.9b00276
Invisible-Light Labs. https://www.invisible-light-labs.com/ (accessed Aug 24, 2022).
Chien, M. H.; Brameshuber, M.; Rossboth, B. K.; Schütz, G. J.; Schmid, S. Single-Molecule Optical Absorption Imaging by Nanomechanical Photothermal Sensing. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (44), 11150-11155, 10.1073/pnas.1804174115
Singh, R.; Nicholl, R. J. T.; Bolotin, K. I.; Ghosh, S. Motion Transduction with Thermo-Mechanically Squeezed Graphene Resonator Modes. Nano Lett. 2018, 18 (11), 6719-6724, 10.1021/acs.nanolett.8b02293
Schwarz, C.; Pigeau, B.; Mercier De Lépinay, L.; Kuhn, A. G.; Kalita, D.; Bendiab, N.; Marty, L.; Bouchiat, V.; Arcizet, O. Deviation from the Normal Mode Expansion in a Coupled Graphene-Nanomechanical System. Phys. Rev. Appl. 2016, 6 (6), 064021, 10.1103/PhysRevApplied.6.064021
Verbiest, G. J.; Kirchhof, J. N.; Sonntag, J.; Goldsche, M.; Khodkov, T.; Stampfer, C. Detecting Ultrasound Vibrations with Graphene Resonators. Nano Lett. 2018, 18 (8), 5132-5137, 10.1021/acs.nanolett.8b02036
Lee, J.; Wang, Z.; He, K.; Shan, J.; Feng, P. X. L. High Frequency MoS2 Nanomechanical Resonators. ACS Nano 2013, 7 (7), 6086-6091, 10.1021/nn4018872
Ye, F.; Islam, A.; Zhang, T.; Feng, P. X.-L. Ultrawide Frequency Tuning of Atomic Layer van Der Waals Heterostructure Electromechanical Resonators. Nano Lett. 2021, 21 (13), 5508-5515, 10.1021/acs.nanolett.1c00610
Dolleman, R. J.; Lloyd, D.; Lee, M.; Scott Bunch, J.; Van Der Zant, H. S. J.; Steeneken, P. G. Transient Thermal Characterization of Suspended Monolayer MoS2. Phys. Rev. Mater. 2018, 2 (11), 114008, 10.1103/PhysRevMaterials.2.114008
Nicholl, R. J. T.; Conley, H. J.; Lavrik, N. V.; Vlassiouk, I.; Puzyrev, Y. S.; Sreenivas, V. P.; Pantelides, S. T.; Bolotin, K. I. The Effect of Intrinsic Crumpling on the Mechanics of Free-Standing Graphene. Nat. Commun. 2015, 6, 8789, 10.1038/ncomms9789
Dolleman, R. J.; Houri, S.; Davidovikj, D.; Cartamil-Bueno, S. J.; Blanter, Y. M.; Van Der Zant, H. S. J.; Steeneken, P. G. Optomechanics for Thermal Characterization of Suspended Graphene. Phys. Rev. B 2017, 96 (16), 165421, 10.1103/PhysRevB.96.165421
Aslan, B.; Yule, C.; Yu, Y.; Lee, Y. J.; Heinz, T. F.; Cao, L.; Brongersma, M. L. Excitons in Strained and Suspended Monolayer WSe 2. 2D Mater. 2022, 9 (1), 015002, 10.1088/2053-1583/ac2d15
Aslan, O. B.; Deng, M.; Heinz, T. F. Strain Tuning of Excitons in Monolayer WSe2. Phys. Rev. B 2018, 98 (11), 115308, 10.1103/PhysRevB.98.115308
Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of Electronic Structure in Atomically Thin Sheets of Ws 2 and Wse2. ACS Nano 2013, 7 (1), 791-797, 10.1021/nn305275h
Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10 (4), 1271-1275, 10.1021/nl903868w
Castellanos-Gomez, A.; Quereda, J.; Van Der Meulen, H. P.; Agraït, N.; Rubio-Bollinger, G. Spatially Resolved Optical Absorption Spectroscopy of Single-and Few-Layer MoS2 by Hyperspectral Imaging. Nanotechnology 2016, 27 (11), 115705, 10.1088/0957-4484/27/11/115705
Barton, R. A.; Storch, I. R.; Adiga, V. P.; Sakakibara, R.; Cipriany, B. R.; Ilic, B.; Wang, S. P.; Ong, P.; McEuen, P. L.; Parpia, J. M.; Craighead, H. G. Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems. Nano Lett. 2012, 12 (9), 4681-4686, 10.1021/nl302036x
Xie, H.; Jiang, S.; Rhodes, D. A.; Hone, J. C.; Shan, J.; Mak, K. F. Tunable Exciton-Optomechanical Coupling in Suspended Monolayer MoSe2. Nano Lett. 2021, 21 (6), 2538-2543, 10.1021/acs.nanolett.0c05089
Allan, D. W. Statistics of Atomic Frequency Standards. Proc. IEEE 1966, 54 (2), 221-230, 10.1109/PROC.1966.4634
Bolduc, M.; Terroux, M.; Tremblay, B.; Marchese, L.; Savard, E.; Doucet, M.; Oulachgar, H.; Alain, C.; Jerominek, H.; Bergeron, A. Noise-Equivalent Power Characterization of an Uncooled Microbolometer-Based THz Imaging Camera. Terahertz Physics, Devices, Syst. V Adv. Appl. Ind. Def. 2011, 8023, 80230C
Yang, H. H.; Rebeiz, G. M. Sub-10-PW/Hz0.5 Uncooled Micro-Bolometer with a Vacuum Micro-Package. IEEE Trans. Microw. Theory Technol. 2016, 64 (7), 2129-2136, 10.1109/TMTT.2016.2562623
Abdel-Rahman, M.; Al-Khalli, N.; Zia, M. F.; Alduraibi, M.; Ilahi, B.; Awad, E.; Debbar, N. Fabrication and Design of Vanadium Oxide Microbolometer. In AIP Conference Proceedings; 2017; Vol. 1809, p 20001.
Blaikie, A.; Miller, D.; Alemán, B. J. A Fast and Sensitive Room-Temperature Graphene Nanomechanical Bolometer. Nat. Commun. 2019, 10 (1), 1-8, 10.1038/s41467-019-12562-2
Ghadimi, A. H.; Fedorov, S. A.; Engelsen, N. J.; Bereyhi, M. J.; Schilling, R.; Wilson, D. J.; Kippenberg, T. J. Elastic Strain Engineering for Ultralow Mechanical Dissipation. Science (80-.) 2018, 360 (6390), 764-768, 10.1126/science.aar6939
Malekpour, H.; Ramnani, P.; Srinivasan, S.; Balasubramanian, G.; Nika, D. L.; Mulchandani, A.; Lake, R. K.; Balandin, A. A. Thermal Conductivity of Graphene with Defects Induced by Electron Beam Irradiation. Nanoscale 2016, 8 (30), 14608-14616, 10.1039/C6NR03470E
Yan, Z.; Yoon, M.; Kumar, S. Influence of Defects and Doping on Phonon Transport Properties of Monolayer MoSe2. 2D Mater. 2018, 5 (3), 031008, 10.1088/2053-1583/aabd54