energy harvesting; PVDF; piezoelectricity; pyroelectricity; triboelectricity; energy storage
Abstract :
[en] Organic ferroelectrics are increasingly important due to their complementary properties to classical, inorganic ferroelectrics. Flexibility, chemical resistance, scalability, high breakdown fields, and biocompatibility are attractive for many applications like energy harvesting and storage. The most known energy harvesting methods are piezoelectric, pyroelectric, and triboelectric. Here, we apply the well-established material's figures of merit to five polyvinylidene-fluoride-based compositions ranging from ferroelectric to relaxor-like behavior to emphasize the importance of several key material parameters contributing to the maximal power output of energy harvesting devices. Afterward, we discuss the possibility of the same functional material storing the output energy for the development of scalable multifunctional devices.
Fricaudet, Matthieu; Univ Paris Saclay, Lab SPMS, CentraleSupelec, CNRS, F-91190 Gif Sur Yvette, France.
Ziberna, Katarina; Jozef Stefan Inst, Ljubljana 1000, Slovenia.
Salmanov, Samir; Jozef Stefan Inst, Ljubljana 1000, Slovenia.
KREISEL, Jens ; University of Luxembourg > CRC > Department of Physics and Materials Science (DPHYMS)
He, Delong; Univ Paris Saclay, CNRS, Lab LMPS, CentraleSupelec ENSParis Saclay, F-91190 Gif Sur Yvette, France.
DKHIL, Brahim ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Rojac, Tadej; Jozef Stefan Inst, Ljubljana 1000, Slovenia.
Otonicar, Mojca; Jozef Stefan Inst, Ljubljana 1000, Slovenia.
Janolin, Pierre-Eymeric; Univ Paris Saclay, Lab SPMS, CentraleSupelec, CNRS, F-91190 Gif Sur Yvette, France.
Bradesko, Andraz; Univ Paris Saclay, Lab SPMS, CentraleSupelec, CNRS, F-91190 Gif Sur Yvette, France.
External co-authors :
yes
Language :
English
Title :
Multifunctional Properties of Polyvinylidene-Fluoride-Based Materials: From Energy Harvesting to Energy Storage
Publication date :
14 November 2022
Journal title :
ACS Applied Electronic Materials
eISSN :
2637-6113
Publisher :
Amer Chemical Soc, Washington, Unknown/unspecified
Volume :
4
Issue :
11
Pages :
5429–5436
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
"Investissements d'Avenir" program [ANR-10-LABX-0035] PHC Slovenian-French Proteus mobility grant [BI-FR/21-22-PROTEUS-004] Slovenian Research Agency [P2-0105, J2-2508] FNR-Luxembourg INTERmobility grant [INTER/Mobility/19/13992074]
Commentary :
The authors acknowledge the "Investissements d'Avenir" program (ANR-10-LABX-0035, LabexNanoSaclay through the flagship NanoVibes) , PHC Slovenian-French Proteus mobility grant (BI-FR/21-22-PROTEUS-004) , Slovenian Research Agency (program P2-0105, J2-2508) , and FNR-Luxembourg INTERmobility grant (INTER/Mobility/19/13992074) .
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Jaffe, B.; Cook, W. R. J.; Jaffe, H. L. Piezoelectric Ceramics; Roberts, J. P., Popper, P., Eds.; Academic Press Inc.: London, United Kingdom, 1971; Vol. 3.
Awolusi, I.; Marks, E.; Hallowell, M. Wearable Technology for Personalized Construction Safety Monitoring and Trending: Review of Applicable Devices. Autom. Constr. 2018, 85, 96-106, 10.1016/j.autcon.2017.10.010
Taraldsen, K.; Chastin, S. F. M.; Riphagen, I. I.; Vereijken, B.; Helbostad, J. L. Physical Activity Monitoring by Use of Accelerometer-Based Body-Worn Sensors in Older Adults: A Systematic Literature Review of Current Knowledge and Applications. Maturitas 2012, 71, 13-19, 10.1016/j.maturitas.2011.11.003
Chen, X.; Han, X.; Shen, Q. D. PVDF-Based Ferroelectric Polymers in Modern Flexible Electronics. Adv. Electron. Mater 2017, 3, 5, 10.1002/aelm.201600460
Lovinger, A.J. Poly(Vinylidene Fluoride). In Developments in Crystalline Polymers 1; Springer Netherlands: Dordrecht, 1982; Vol. 4, pp. 195-273, 10.1007/978-94-009-7343-5_5.
Furukawa, T. Structure and Properties of Ferroelectric Polymers. Mech. Corros. Prop. Ser. A, Key Eng. Mater. 1994, 92-93, 15-30, 10.4028/www.scientific.net/kem.92-93.15
Yang, L.; Li, X.; Allahyarov, E.; Taylor, P. L.; Zhang, Q. M.; Zhu, L. Novel Polymer Ferroelectric Behavior via Crystal Isomorphism and the Nanoconfinement Effect. Polymer 2013, 54, 1709-1728, 10.1016/j.polymer.2013.01.035
Meng, Y.; Zhang, Z.; Wu, H.; Wu, R.; Wu, J.; Wang, H.; Pei, Q. A Cascade Electrocaloric Cooling Device for Large Temperature Lift. Nat. Energy 2020, 5, 996-1002, 10.1038/s41560-020-00715-3
Tian, B.; Liu, L.; Yan, M.; Wang, J.; Zhao, Q.; Zhong, N.; Xiang, P.; Sun, L.; Peng, H.; Shen, H.; Lin, T.; Dkhil, B.; Meng, X.; Chu, J.; Tang, X.; Duan, C. A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. Adv. Electron. Mater. 2019, 5, 1-8, 10.1002/aelm.201800600
Lheritier, P.; Noel, S.; Vaxelaire, N.; Domingues Dos Santos, F.; Defay, E. Actuation Efficiency of Polyvinylidene Fluoride-Based Co-and Ter-Polymers. Polymer 2018, 156, 270-275, 10.1016/j.polymer.2018.10.003
Costa, P.; Nunes-Pereira, J.; Pereira, N.; Castro, N.; Goncąlves, S.; Lanceros-Mendez, S. Recent Progress on Piezoelectric, Pyroelectric, and Magnetoelectric Polymer-Based Energy-Harvesting Devices. Energy Technol. 2019, 7, 1-19, 10.1002/ente.201800852
Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2, 642-697, 10.1016/j.joule.2018.03.011
Bhalla, A. S.; Newnham, R. E. Primary and Secondary Pyroelectricity. Phys. Status Solidi 1980, 58, K19-K24, 10.1002/pssa.2210580146
Bowen, C. R.; Taylor, J.; Leboulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric Materials and Devices for Energy Harvesting Applications. Energy Environ. Sci. 2014, 7, 3836-3856, 10.1039/c4ee01759e
Zhao, T.; Jiang, W.; Niu, D.; Liu, H.; Chen, B.; Shi, Y.; Yin, L.; Lu, B. Flexible Pyroelectric Device for Scavenging Thermal Energy from Chemical Process and as Self-Powered Temperature Monitor. Appl. Energy 2017, 195, 754-760, 10.1016/j.apenergy.2017.03.097
Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible Triboelectric Generator. Nano Energy 2012, 1, 328-334, 10.1016/j.nanoen.2012.01.004
Liu, Y.; Tian, G.; Wang, Y.; Lin, J.; Zhang, Q.; Hofmann, H. F. Active Piezoelectric Energy Harvesting: General Principle and Experimental Demonstration. J. Intell. Mater. Syst. Struct. 2009, 20, 575-585, 10.1177/1045389X08098195
Liang, J.; Liao, W. H. Energy Flow in Piezoelectric Energy Harvesting Systems. Smart Mater. Struct. 2011, 20, 015005, 10.1088/0964-1726/20/1/015005
Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science 2006, 313, 334-336, 10.1126/science.1127798
Liu, Y.; Lin, Y.-T.; Haibibu, A.; Xu, W.; Zhou, Y.; Li, L.; Kim, S. H.; Wang, Q. Relaxor Ferroelectric Polymers: Insight into High Electrical Energy Storage Properties from a Molecular Perspective. Small Sci. 2021, 1, 2000061, 10.1002/smsc.202000061
Jiang, H.; Yang, J.; Xu, F.; Wang, Q.; Liu, W.; Chen, Q.; Wang, C.; Zhang, X.; Zhu, G. VDF-Content-Guided Selection of Piezoelectric P(VDF-TrFE) Films in Sensing and Energy Harvesting Applications. Energy Convers. Manage. 2020, 211, 112771, 10.1016/j.enconman.2020.112771
Bai, Y.; Jantunen, H.; Juuti, J. Energy Harvesting Research: The Road from Single Source to Multisource. Adv. Mater. 2018, 30, 1-41, 10.1002/adma.201707271
Lovinger, A. J.; Furukawa, T.; Davis, G. T.; Broadhurst, M. G.; Furukawa, T. Crystalline Forms in a Copolymer of Vinylidene Fluoride and Trifluoroethylene (52/48 Mol %). Macromolecules 1982, 15, 323-328, 10.1021/ma00230a024
Casar, G.; Li, X.; Koruza, J.; Zhang, Q.; Bobnar, V. Electrical and Thermal Properties of Vinylidene Fluoride-Trifluoroethylene-Based Polymer System with Coexisting Ferroelectric and Relaxor States. J. Mater. Sci. 2013, 48, 7920-7926, 10.1007/s10853-013-7602-4
Cross, L. E. Relaxor Ferroelectrics. Ferroelectrics 1987, 76, 241-267, 10.1080/00150198708016945
Pramanick, A.; Osti, N. C.; Jalarvo, N.; Misture, S. T.; Diallo, S. O.; Mamontov, E.; Luo, Y.; Keum, J. K.; Littrell, K. Origin of Dielectric Relaxor Behavior in PVDF-Based Copolymer and Terpolymer Films. AIP Adv. 2018, 8, 4, 10.1063/1.5014992
Roscow, J. I.; Pearce, H.; Khanbareh, H.; Kar-Narayan, S.; Bowen, C. R. Modified Energy Harvesting Figures of Merit for Stress-and Strain-Driven Piezoelectric Systems. Eur. Phys. J.: Spec. Top. 2019, 228, 1537-1554, 10.1140/epjst/e2019-800143-7
Priya, S. Criterion for Material Selection in Design of Bulk Piezoelectric Energy Harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 2610-2612, 10.1109/TUFFC.2010.1734
Burkard, H.; Pfister, G. Reversible Pyroelectricity and Inverse Piezoelectricity in Polyvinylidene Fluoride. J. Appl. Phys. 1974, 45, 3360-3364, 10.1063/1.1663785
Sagar, R.; Gaur, S. S.; Gaur, M. S. Effect of BaZrO3 Nanoparticles on Pyroelectric Properties of Polyvinylidene Fluoride (PVDF). J. Therm. Anal. Calorim. 2017, 128, 1235-1239, 10.1007/s10973-016-5964-y
Sebald, G.; Seveyrat, L.; Guyomar, D.; Lebrun, L.; Guiffard, B.; Pruvost, S. Electrocaloric and Pyroelectric Properties of 0.75Pb(Mg 1/3Nb2/3)O3-0.25PbTiO3 Single Crystals. J. Appl. Phys. 2006, 100, 124112, 10.1063/1.2407271
Pandya, S.; Velarde, G.; Zhang, L.; Wilbur, J. D.; Smith, A.; Hanrahan, B.; Dames, C.; Martin, L. W. New Approach to Waste-Heat Energy Harvesting: Pyroelectric Energy Conversion. NPG Asia Mater. 2019, 11, 1, 10.1038/s41427-019-0125-y
Yan, J.; Liu, M.; Jeong, Y. G.; Kang, W.; Li, L.; Zhao, Y.; Deng, N.; Cheng, B.; Yang, G. Performance Enhancements in Poly(Vinylidene Fluoride)-Based Piezoelectric Nanogenerators for Efficient Energy Harvesting. Nano Energy 2019, 56, 662-692, 10.1016/j.nanoen.2018.12.010
Anand, A.; Bhatnagar, M. C. Effect of Sodium Niobate (NaNbO3) Nanorods on β-Phase Enhancement in Polyvinylidene Fluoride (PVDF) Polymer. Mater. Res. Express 2019, 6, 55011, 10.1088/2053-1591/aaefd9
Wang, Z. L.; Wang, A. C. On the Origin of Contact-Electrification. Mater. Today 2019, 30, 34-51, 10.1016/j.mattod.2019.05.016
Wu, C.; Wang, A. C.; Ding, W.; Guo, H.; Wang, Z. L. Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Adv. Energy Mater. 2019, 9, 1-25, 10.1002/aenm.201802906
MacKey, M.; Schuele, D. E.; Zhu, L.; Baer, E. Layer Confinement Effect on Charge Migration in Polycarbonate/Poly(Vinylidene Fluorid-Co-Hexafluoropropylene) Multilayered Films. J. Appl. Phys. 2012, 111, 113702, 10.1063/1.4722348
Peng, J.; Kang, S. D.; Snyder, G. J. Optimization Principles and the Figure of Merit for Triboelectric Generators. Sci. Adv. 2017, 3, 1-7, 10.1126/sciadv.aap8576
Bai, P.; Zhu, G.; Zhou, Y. S.; Wang, S.; Ma, J.; Zhang, G.; Wang, Z. L. Dipole-Moment-Induced Effect on Contact Electrification for Triboelectric Nanogenerators. Nano Res. 2014, 7, 990-997, 10.1007/s12274-014-0461-8
Jin, L.; Li, F.; Zhang, S. Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. J. Am. Ceram. Soc. 2014, 97, 1-27, 10.1111/jace.12773
Fulanović, L.; Zhang, M. H.; Fu, Y.; Koruza, J.; Rödel, J. NaNbO3-Based Antiferroelectric Multilayer Ceramic Capacitors for Energy Storage Applications. J. Eur. Ceram. Soc. 2021, 41, 5519-5525, 10.1016/j.jeurceramsoc.2021.04.052
Similar publications
Sorry the service is unavailable at the moment. Please try again later.