Mesh-free simulations of injection molding processes

2022 • In *Physics of Fluids, 34* (3), p. 033102

Peer reviewed

VeltmaatSuchdeEtAl2022-Meshfree_Injection_Molding.pdf

Author preprint (4.14 MB)

All documents in ORBilu are protected by a user license.

copy to clipboard copied

Disciplines :

Materials science & engineering

Engineering, computing & technology: Multidisciplinary, general & others

Mechanical engineering

Engineering, computing & technology: Multidisciplinary, general & others

Mechanical engineering

Veltmaat, Lennart

Mehrens, Felix

Endres, Hans-Josef

Kuhnert, Jörg

Suchde, Pratik ^{} ^{}; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)

External co-authors :

yes

Language :

English

Title :

Mesh-free simulations of injection molding processes

Publication date :

2022

Journal title :

Physics of Fluids

Publisher :

AIP Publishing LLC

Volume :

34

Issue :

3

Pages :

033102

Peer reviewed :

Peer reviewed

European Projects :

H2020 - 892761 - SURFING - Flow on thin fluid sheets

Funders :

CE - Commission Européenne [BE]

Available on ORBilu :

since 02 January 2023

Scopus citations^{®}

4

Scopus citations^{®}

without self-citations

without self-citations

3

OpenCitations

2

WoS citations^{™}

4

- C. Fernandes, A. J. Pontes, J. C. Viana, and A. Gaspar-Cunha, "Modeling and optimization of the injection-molding process: A review," Adv. Polym. Technol. 37, 429-449 (2018). 10.1002/adv.21683
- C. A. Hieber and S. F. Shen, "A finite-element/finite-difference simulation of the injection-molding filling process," J. Non-Newtonian Fluid Mech. 7, 1-32 (1980). 10.1016/0377-0257(80)85012-9
- M. Ren, J. Gu, Z. Li, S. Ruan, and C. Shen, "Simulation of polymer melt injection molding filling flow based on an improved SPH method with modified low-dissipation Riemann solver," Macromol. Theory Simul. 31, 2100029 (2022). 10.1002/mats.202100029
- C. Shen, W. Lixia, and Q. Li, "Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method," J. Mater. Process. Technol. 183, 412-418 (2007). 10.1016/j.jmatprotec.2006.10.036
- M. V. Bruschke and S. G. Advani, "A finite element/control volume approach to mold filling in anisotropic porous media," Polym. Compos. 11, 398-405 (1990). 10.1002/pc.750110613
- E. Holm and H. P. Langtangen, "A unified finite element model for the injection molding process," Comput. Methods Appl. Mech. Eng. 178, 413-429 (1999). 10.1016/S0045-7825(99)00029-8
- H. Chen, P. Wapperom, and D. G. Baird, "The use of flow type dependent strain reduction factor to improve fiber orientation predictions for an injection molded center-gated disk," Phys. Fluids 31, 123105 (2019). 10.1063/1.5129679
- R.-Y. Chang and W.-h. Yang, "Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach," Int. J. Numer. Methods Fluids 37, 125-148 (2001). 10.1002/fld.166
- P. H. Foss, H.-C. Tseng, J. Snawerdt, Y.-J. Chang, W-h. Yang, and C.-H. Hsu, "Prediction of fiber orientation distribution in injection molded parts using moldex3D simulation," Polym. Compos. 35, 671-680 (2014). 10.1002/pc.22710
- S. Xue, N. Phan-Thien, and R. I. Tanner, "Three dimensional numerical simulations of viscoelastic flows through planar contractions," J. Non-Newtonian Fluid Mech. 74, 195-245 (1998). 10.1016/S0377-0257(97)00072-4
- E. Bertevas, J. Férec, B. C. Khoo, G. Ausias, and N. Phan-Thien, "Smoothed particle hydrodynamics (SPH) modeling of fiber orientation in a 3D printing process," Phys. Fluids 30, 103103 (2018). 10.1063/1.5047088
- Y. Morii and T. Kawakatsu, "Lagrangian multiscale simulation of complex flows," Phys. Fluids 33, 093106 (2021). 10.1063/5.0063059
- T. Ye, D. Pan, C. Huang, and M. Liu, "Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications," Phys. Fluids 31, 011301 (2019). 10.1063/1.5068697
- X.-J. Fan, R. I. Tanner, and R. Zheng, "Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow," J. Non-Newtonian Fluid Mech. 165, 219-226 (2010). 10.1016/j.jnnfm.2009.12.004
- L. He, G. Lu, D. Chen, W. Li, L. Chen, J. Yuan, and C. Lu, "Smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites," J. Compos. Mater. 52, 1531-1539 (2018). 10.1177/0021998317726365
- K. Wu, L. Wan, H. Zhang, and D. Yang, "Numerical simulation of the injection molding process of short fiber composites by an integrated particle approach," Int. J. Adv. Manuf. Technol. 97, 3479-3491 (2018). 10.1007/s00170-018-2204-6
- X. Xu and P. Yu, "Modeling and simulation of injection molding process of polymer melt by a robust SPH method," Appl. Math. Modell. 48, 384-409 (2017). 10.1016/j.apm.2017.04.007
- X. Xu and P. Yu, "Extension of SPH to simulate non-isothermal free surface flows during the injection molding process," Appl. Math. Modell. 73, 715-731 (2019). 10.1016/j.apm.2019.02.048
- J. Kuhnert, "General smoothed particle hydrodynamics," Ph.D. thesis (Technische Universität Kaiserslautern, Aachen, 1999).
- A. Jefferies, J. Kuhnert, L. Aschenbrenner, and U. Giffhorn, "Finite pointset method for the simulation of a vehicle travelling through a body of water," in Meshfree Methods for Partial Differential Equations VII, edited by M. Griebel and M. A. Schweitzer (Springer International Publishing, Cham, 2015), pp. 205-221.
- I. Michel, S. M. I. Bathaeian, J. Kuhnert, D. Kolymbas, C.-H. Chen, I. Polymerou, C. Vrettos, and A. Becker, "Meshfree generalized finite difference methods in soil mechanics-Part II: Numerical results," GEM Int. J. Geomath. 8, 191-217 (2017). 10.1007/s13137-017-0096-5
- I. Michel, T. Seifarth, J. Kuhnert, and P. Suchde, "A meshfree generalized finite difference method for solution mining processes," Comput. Part. Mech. 8, 561-574 (2021). 10.1007/s40571-020-00353-2
- E. O. Reséndiz-Flores, J. Kuhnert, and F. R. Saucedo-Zendejo, "Application of a generalized finite difference method to mould filling process," Eur. J. Appl. Math. 29, 450-469 (2018). 10.1017/S0956792517000249
- E. Oñate, J. Rojek, M. Chiumenti, S. Idelsohn, F. Del Pin, and R. Aubry, "Advances in stabilized finite element and particle methods for bulk forming processes," Comput. Methods Appl. Mech. Eng. 195, 6750-6777 (2006). 10.1016/j.cma.2004.10.018
- K. Butler, E. Oñate, S. Idelsohn, and R. Rossi, "Modeling polymer melt flow using the particle finite element method (PFEM)," in Proceeding of The Interflam Conference (2007).
- M. Cremonesi, A. Franci, S. Idelsohn, and E. Oñate, "A state of the art review of the particle finite element method (PFEM)," Arch. Comput. Methods Eng. 27, 1709-1735 (2020). 10.1007/s11831-020-09468-4
- Grand View Research, "Injection molded plastics market size, share & trends analysis report by raw material (polypropylene, ABS, HDPE, polystyrene), by application (packaging, automotive & transportation, medical), by region, and segment forecasts, 2021-2028," Report No. 978-1-68038-128-3 (2021).
- Injection Molding Handbook, edited by D. V. Rosato, D. V. Rosato, and M. G. Rosato, 3 rd ed. (Springer, Boston, MA, 2000).
- R. Zheng, R. I. Tanner, and X. J. Fan, Injection Molding: Integration of Theory and Modeling Methods (Springer, Berlin/Heidelberg, 2011).
- Computer Modeling for Injection Molding: Simulation, Optimization, and Control, edited by H. Zhou (Wiley, Hoboken, NJ, 2013).
- D. W. van Krevelen and K. te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed. (Elsevier, Amsterdam, 2009).
- P. Zoller and Y. A. Fakhreddine, "Pressure-volume-temperature studies of semi-crystalline polymers," Thermochim. Acta 238, 397-415 (1994). 10.1016/S0040-6031(94)85221-9
- C. A. Hieber, "Modelling the PVT behavior of isotactic polypropylene," Int. Polym. Process. 12, 249-256 (1997). 10.3139/217.970249
- N. Rudolph and T. A. Osswald, Polymer Rheology: Fundamentals and Applications (Carl Hanser Verlag GmbH & Company KG, 2014).
- P. Suchde, J. Kuhnert, S. Schröder, and A. Klar, "A flux conserving meshfree method for conservation laws," Int. J. Numer. Methods Eng. 112, 238-256 (2017). 10.1002/nme.5511
- R. Brunotte, Die Thermodynamischen Und Verfahrenstechnischen Abläufe Der in-situ-Oberflächenmodifizierung Beim Spritzgießen, Schriftenreihe Kunststoffe (FKTU, 2006).
- P. Suchde and J. Kuhnert, "Point cloud movement for fully Lagrangian meshfree methods," J. Comput. Appl. Math. 340, 89-100 (2018). 10.1016/j.cam.2018.02.020
- H. A. van der Vorst, "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput. 13, 631-644 (1992). 10.1137/0913035
- P. Suchde, J. Kuhnert, and S. Tiwari, "On meshfree GFDM solvers for the incompressible Navier-Stokes equations," Comput. Fluids 165, 1-12 (2018). 10.1016/j.compfluid.2018.01.008
- J. Kuhnert, "Meshfree numerical scheme for time dependent problems in fluid and continuum mechanics," in Advances in PDE Modeling and Computation, edited by S. Sundar (Anne Books, New Delhi, 2014), pp. 119-136.
- C. Drumm, S. Tiwari, J. Kuhnert, and H.-J. Bart, "Finite pointset method for simulation of the liquid-liquid flow field in an extractor," Comput. Chem. Eng. 32, 2946-2957 (2008). 10.1016/j.compchemeng.2008.03.009
- B. Seibold, "M-matrices in meshless finite difference methods," Ph.D. thesis (Kaiserslautern University, 2006).
- T. Seifarth, "Numerische Algortihmen Für gitterfreie Methoden zur Lösung von Transportproblemen," Ph.D. thesis (University of Kassel, Kassel, 2017).
- E. Kwan-yu Chiu, Q. Wang, R. Hu, and A. Jameson, "A conservative mesh-free scheme and generalized framework for conservation laws," SIAM J. Sci. Comput. 34, 2896-2916 (2012). 10.1137/110842740
- P. Suchde, "Conservation and accuracy in meshfree generalized finite difference methods," Ph.D. thesis (University of Kaiserslautern, Kaiserslautern, Germany, 2018).
- T. Liszka and J. Orkisz, "Special issue-computational methods in nonlinear mechanics the finite difference method at arbitrary irregular grids and its application in applied mechanics," Comput. Struct. 11, 83-95 (1980). 10.1016/0045-7949(80)90149-2
- J. Benito, F. Ureña, and L. Gavete, "Influence of several factors in the generalized finite difference method," Appl. Math. Modell. 25, 1039-1053 (2001). 10.1016/S0307-904X(01)00029-4
- S. Milewski, "Selected computational aspects of the meshless finite difference method," Numer. Algorithms 63, 107-126 (2013). 10.1007/s11075-012-9614-6
- C.-M. Fan, C.-N. Chu, B. Šarler, and T.-H. Li, "Numerical solutions of waves-current interactions by generalized finite difference method," Eng. Anal. Boundary Elem. 100, 150-163 (2019). 10.1016/j.enganabound.2018.01.010
- P. Suchde, "A meshfree Lagrangian method for flow on manifolds," Int. J. Numer. Methods Fluids 93, 1871-1894 (2021). 10.1002/fld.4957
- Y. Wang, Y. Gu, and J. Liu, "A domain-decomposition generalized finite difference method for stress analysis in three-dimensional composite materials," Appl. Math. Lett. 104, 106226 (2020). 10.1016/j.aml.2020.106226
- H. Xia and Y. Gu, "Generalized finite difference method for electroelastic analysis of three-dimensional piezoelectric structures," Appl. Math. Lett. 117, 107084 (2021). 10.1016/j.aml.2021.107084
- J. P. Morris, P. J. Fox, and Y. Zhu, "Modeling low Reynolds number incompressible flows using SPH," J. Comput. Phys. 136, 214-226 (1997). 10.1006/jcph.1997.5776
- J. O. Cruickshank, "Low-Reynolds-number instabilities in stagnating jet flows," J. Fluid Mech. 193, 111-127 (1988). 10.1017/S0022112088002071
- E. Mitsoulis, "Fountain flow of pseudoplastic and viscoplastic fluids," J. Non-Newtonian Fluid Mech. 165, 45-55 (2010). 10.1016/j.jnnfm.2009.09.001
- X. J. Fan, R. I. Tanner, and R. Zheng, "Smoothed particle hydrodynamics and its application to non-Newtonian moulding flow," in Injection Molding: Process, Design, and Applications, edited by Phoebe H. Kauffer (Nova Science Publishers, 2011), pp. 101-154.