Article (Périodiques scientifiques)
Detection of Spoofing Attacks in Aeronautical Ad-Hoc Networks Using Deep Autoencoders
Hoang, Tiep M.; Van Chien, Trinh; Van Luong, Thien et al.
2022In IEEE Transactions on Information Forensics and Security, 17
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Detection_of_Spoofing_Attacks_in_Aeronautical_Ad-Hoc_Networks_Using_Deep_Autoencoders.pdf
Postprint Éditeur (3.11 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] We consider an aeronautical ad-hoc network relying on aeroplanes operating in the presence of a spoofer. The aggregated signal received by the terrestrial base station is considered as “clean” or “normal”, if the legitimate aeroplanes transmit their signals and there is no spoofing attack. By contrast, the received signal is considered as “spurious” or “abnormal” in the face of a spoofing signal. An autoencoder (AE) is trained to learn the characteristics/features from a training dataset, which contains only normal samples associated with no spoofing attacks. The AE takes original samples as its input samples and reconstructs them at its output. Based on the trained AE, we define the detection thresholds of our spoofing discovery algorithm. To be more specific, contrasting the output of the AE against its input will provide us with a measure of geometric waveform similarity/dissimilarity in terms of the peaks of curves. To quantify the similarity between unknown testing samples and the given training samples (including normal samples), we first propose a so-called deviation-based algorithm . Furthermore, we estimate the angle of arrival (AoA) from each legitimate aeroplane and propose a so-called AoA-based algorithm . Then based on a sophisticated amalgamation of these two algorithms, we form our final detection algorithm for distinguishing the spurious abnormal samples from normal samples under a strict testing condition. In conclusion, our numerical results show that the AE improves the trade-off between the correct spoofing detection rate and the false alarm rate as long as the detection thresholds are carefully selected.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Hoang, Tiep M.
Van Chien, Trinh
Van Luong, Thien
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Detection of Spoofing Attacks in Aeronautical Ad-Hoc Networks Using Deep Autoencoders
Date de publication/diffusion :
2022
Titre du périodique :
IEEE Transactions on Information Forensics and Security
ISSN :
1556-6013
eISSN :
1556-6021
Maison d'édition :
IEEE, Etats-Unis
Volume/Tome :
17
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 27 décembre 2022

Statistiques


Nombre de vues
154 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
14
citations Scopus®
sans auto-citations
11
citations OpenAlex
 
13
citations WoS
 
13

Bibliographie


Publications similaires



Contacter ORBilu