Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021). DOI: 10.1038/s41586-021-03285-w
Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020). DOI: 10.1038/s41560-020-0653-2
Park, B.-W. et al. Stabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cells. Nat. Energy 6, 419–428 (2021). DOI: 10.1038/s41560-021-00802-z
Li, Z. et al. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 18017 (2018). DOI: 10.1038/natrevmats.2018.17
Werner, J. et al. Learning from existing photovoltaic technologies to identify alternative perovskite module designs. Energy Environ. Sci. 13, 3393–3403 (2020). DOI: 10.1039/D0EE01923B
Lee, S. W., Bae, S., Kim, D. & Lee, H. S. Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. 32, 2002202 (2020). DOI: 10.1002/adma.202002202
Peng, J. et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021). DOI: 10.1126/science.abb8687
Stolterfoht, M. et al. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530–1539 (2017). DOI: 10.1039/C7EE00899F
Kim, D. H., Whitaker, J. B., Li, Z., van Hest, M. F. A. M. & Zhu, K. Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule 2, 1437–1451 (2018). DOI: 10.1016/j.joule.2018.05.011
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). DOI: 10.1038/s41566-019-0398-2
Kim, M. et al. Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 5, 659–672 (2021). DOI: 10.1016/j.joule.2021.02.007
Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020). DOI: 10.1126/science.abc4417
Marchioro, A. et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photon. 8, 250–255 (2014). DOI: 10.1038/nphoton.2013.374
Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014). DOI: 10.1021/nl404454h
Yang, Z. et al. Device physics of back-contact perovskite solar cells. Energy Environ. Sci. 13, 1753–1765 (2020). DOI: 10.1039/C9EE04203B
Wang, Y., Yue, Y., Yang, X. & Han, L. Toward long-term stable and highly efficient perovskite solar cells via effective charge transporting materials. Adv. Energy Mater. 8, 1800249 (2018). DOI: 10.1002/aenm.201800249
Shahvaranfard, F. et al. Engineering of the electron transport layer/perovskite interface in solar cells designed on TiO2 rutile nanorods. Adv. Funct. Mater. 30, 1909738 (2020). DOI: 10.1002/adfm.201909738
Giordano, F. et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016). DOI: 10.1038/ncomms10379
Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). DOI: 10.1126/science.1254050
Peng, J. et al. Efficient indium-doped TiOx electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems. Adv. Energy Mater. 7, 1601768 (2017). DOI: 10.1002/aenm.201601768
Chen, J., Tao, H. B. & Liu, B. Unraveling the intrinsic structures that influence the transport of charges in TiO2 electrodes. Adv. Energy Mater. 7, 1700886 (2017). DOI: 10.1002/aenm.201700886
Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017). DOI: 10.1126/science.aai9081
Luo, J. et al. Surface rutilization of anatase TiO2 for efficient electron extraction and stable P max output of perovskite solar cells. Chem 4, 911–923 (2018). DOI: 10.1016/j.chempr.2018.01.018
Geng, W. et al. Structures and electronic properties of different CH3NH3PbI3/TiO2 interface: a first-principles study. Sci. Rep. 6, 20131 (2016). DOI: 10.1038/srep20131
Du, B. et al. Crystal face dependent charge carrier extraction in TiO2/perovskite heterojunctions. Nano Energy 67, 104227 (2020). DOI: 10.1016/j.nanoen.2019.104227
Maitani, M. M. et al. Effects of energetics with {001} facet-dominant anatase TiO2 scaffold on electron transport in CH3NH3PbI3 perovskite solar cells. Electrochim. Acta 300, 445–454 (2019). DOI: 10.1016/j.electacta.2019.01.102
Biccari, F. et al. Graphene-based electron transport layers in perovskite solar cells: a step-up for an efficient carrier collection. Adv. Energy Mater. 7, 1701349 (2017). DOI: 10.1002/aenm.201701349
Noel, N. K. et al. Elucidating the role of a tetrafluoroborate-based ionic liquid at the n-type oxide/perovskite interface. Adv. Energy Mater. 10, 1903231 (2019). DOI: 10.1002/aenm.201903231
Xiaobo, C. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007). DOI: 10.1021/cr0500535
Ding, Y. et al. Shape-controlled synthesis of single-crystalline anatase TiO2 micro/nanoarchitectures for efficient dye-sensitized solar cells. Sustain. Energy Fuels 1, 520–528 (2017). DOI: 10.1039/C6SE00041J
Gloter, A., Ewels, C., Umek, P., Arcon, D. & Colliex, C. Electronic structure of titania-based nanotubes investigated by EELS spectroscopy. Phys. Rev. B 80, 035413 (2009). DOI: 10.1103/PhysRevB.80.035413
Mosconi, E., Ronca, E. & De Angelis, F. First-principles investigation of the TiO2/organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619–2625 (2014). DOI: 10.1021/jz501127k
Jiang, Q. et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016). DOI: 10.1038/nenergy.2016.177
Klasen, A. et al. Removal of surface oxygen vacancies increases conductance through TiO2 thin films for perovskite solar cells. J. Phys. Chem. C 123, 13458–13466 (2019). DOI: 10.1021/acs.jpcc.9b02371
Gratia, P. et al. Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 15821–15824 (2016). DOI: 10.1021/jacs.6b10049
Chen, P., Bai, Y. & Wang, L. Minimizing voltage losses in perovskite solar cells. Small Struct. 2, 2000050 (2020). DOI: 10.1002/sstr.202000050
Shi, J. et al. Fluorinated low-dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31, 1901673 (2019). DOI: 10.1002/adma.201901673
Le Corre, V. M., Sherkar, T. S., Koopmans, M. & Koster, L. J. A. Identification of the dominant recombination process for perovskite solar cells based on machine learning. Cell Rep. Phys. Sci. 2, 100346 (2021). DOI: 10.1016/j.xcrp.2021.100346
Pockett, A. & Carnie, M. J. Ionic influences on recombination in perovskite solar cells. ACS Energy Lett. 2, 1683–1689 (2017). DOI: 10.1021/acsenergylett.7b00490
Park, N.-G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020). DOI: 10.1038/s41578-019-0176-2
Tress, W. Perovskite solar cells on the way to their radiative efficiency limit-insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7, 1602358 (2017). DOI: 10.1002/aenm.201602358
Chen, J. & Park, N.-G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5, 2742–2786 (2020). DOI: 10.1021/acsenergylett.0c01240
Yao, J. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015). DOI: 10.1103/PhysRevApplied.4.014020
Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018). DOI: 10.1038/s41560-018-0219-8
Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). DOI: 10.1038/s41586-021-03964-8
Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018). DOI: 10.1039/C7SE00603A
Gong, X. et al. Highly efficient perovskite solar cells with gradient bilayer electron transport materials. Nano Lett. 18, 3969–3977 (2018). DOI: 10.1021/acs.nanolett.8b01440
Lin, P. Y. et al. Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells. Nano Energy 36, 95–101 (2017). DOI: 10.1016/j.nanoen.2017.04.031
Qiu, L., He, S., Ono, L. K., Liu, S. & Qi, Y. Scalable fabrication of metal halide perovskite solar cells and modules. ACS Energy Lett. 4, 2147–2167 (2019). DOI: 10.1021/acsenergylett.9b01396
Ding, B. et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A 6, 10233–10242 (2018). DOI: 10.1039/C8TA01192C
Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). DOI: 10.1038/ncomms3885
Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). DOI: 10.1021/acs.chemrev.8b00336
Zhang, F. et al. Complexities of contact potential difference measurements on metal halide perovskite surfaces. J. Phys. Chem. Lett. 10, 890–896 (2019). DOI: 10.1021/acs.jpclett.8b03878