Article (Périodiques scientifiques)
Optimal Resource Allocation and Task Segmentation in IoT Enabled Mobile Edge Cloud
MAHMOOD, Asad; Hong, Yue; Khurram Ehsan, Muhammad et al.
2021In IEEE Transactions on Vehicular Technology
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Optimal_Resource_Allocation_and_Task_Segmentation_in_IoT_Enabled_Mobile_Edge_Cloud.pdf
Postprint Éditeur (1.9 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Mobile edge cloud computing,; partial offloading scheme,; resource allocation.
Résumé :
[en] Recent development toward innovative applications and technologies like self-driving, augmented reality, smart cities, and various other applications leads to excessive growth in the number of devices. These devices have finite computation resources and cannot handle the applications that require extensive computation with minimal delay. To overcome this, the mobile edge cloud (MEC) emerges as a practical solution that allows devices to offload their extensive computation to MEC located in their vicinity; this will lead to succeeding the arduous delay of the millisecond scale: requirement of 5th generation communication system. This work examines the convex optimization problem. The objective is to minimize the task duration by optimal allocation of the resources like local and edge computational capabilities, transmission power, and optimal task segmentation. For optimal allocation of resources, an algorithm name Estimation of Optimal Resource Allocator (EORA) is designed to optimize the function by keeping track of statistics of each candidate of the population. Using EORA, a comparative analysis of the hybrid approach (partial offloading) and edge computation only is performed. Results reveal the fundamental trade-off between both of these models. Simultaneously, the impact of devices’ computational capability, data volume, and computational cycles requirement on task segmentation is analyzed. Simulation results demonstrate that the hybrid approach: partial offloading scheme reduces the task’s computation time and outperforms edge computing only.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MAHMOOD, Asad  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Hong, Yue;  College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
Khurram Ehsan, Muhammad;  Faculty of Engineering, Bahria University, Lahore Campus, Lahore 54600, Pakistan
Mumtaz, Shahid
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Optimal Resource Allocation and Task Segmentation in IoT Enabled Mobile Edge Cloud
Date de publication/diffusion :
12 décembre 2021
Titre du périodique :
IEEE Transactions on Vehicular Technology
ISSN :
0018-9545
Maison d'édition :
Institute of Electrical and Electronics Engineers, Etats-Unis
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 14 décembre 2022

Statistiques


Nombre de vues
131 (dont 6 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
72
citations Scopus®
sans auto-citations
61
citations OpenAlex
 
71
citations WoS
 
59

Bibliographie


Publications similaires



Contacter ORBilu