Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Novel Reinforcement Learning based Power Control and Subchannel Selection Mechanism for Grant-Free NOMA URLLC-Enabled Systems
TRAN, Duc Dung; HA, Vu Nguyen; CHATZINOTAS, Symeon
2022In Proceedings of 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring)
Peer reviewed
 

Documents


Texte intégral
VTC2022_FINAL_VERSION.pdf
Preprint Auteur (370.29 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Grant-free NOMA; Q-Learning; URLLC
Résumé :
[en] Reducing waiting time due to scheduling process and exploiting multi-access transmission, grant-free non-orthogonal multiple access (GF-NOMA) has been considered as a promising access technology for URLLC-enabled 5G system with strict requirements on reliability and latency. However, GF-NOMAbased systems can suffer from severe interference caused by the grant-free (GF) access manner which may degrade the system performance and violate the URLLC-related requirements. To overcome this issue, the paper proposes a novel reinforcementlearning (RL)-based random access (RA) protocol based on which each device can learn from the previous decision and its corresponding performance to select the best subchannels and transmit power level for data transmission to avoid strong cross-interference. The learning-based framework is developed to maximize the system access efficiency which is defined as the ratio between the number of successful transmissions and the number of subchannels. Simulation results show that our proposed framework can improve the system access efficiency significantly in overloaded scenarios.
Centre de recherche :
- Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM - Signal Processing & Communications
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
TRAN, Duc Dung ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
HA, Vu Nguyen  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Novel Reinforcement Learning based Power Control and Subchannel Selection Mechanism for Grant-Free NOMA URLLC-Enabled Systems
Date de publication/diffusion :
août 2022
Nom de la manifestation :
2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Helsinki, Finlande
Date de la manifestation :
from 19-06-2022 to 22-06-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring)
Pagination :
1-5
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR13713801 - Interconnecting The Sky In 5g And Beyond - A Joint Communication And Control Approach, 2019 (01/06/2020-31/05/2023) - Bjorn Ottersten
Intitulé du projet de recherche :
FNR-funded project CORE 5G-Sky (Grant C19/IS/13713801)
Organisme subsidiant :
FNR and ERC
Disponible sur ORBilu :
depuis le 14 décembre 2022

Statistiques


Nombre de vues
142 (dont 19 Unilu)
Nombre de téléchargements
111 (dont 8 Unilu)

citations Scopus®
 
13
citations Scopus®
sans auto-citations
9

Bibliographie


Publications similaires



Contacter ORBilu