channel modeling; deep learning; unmanned aerial vehicles (UAVs)
Résumé :
[en] Channel modeling of unmanned aerial vehicles (UAVs) from wireless communications has gained great interest for rapid deployment in wireless communication. The UAV channel has its own distinctive characteristics compared to satellite and cellular networks. Many proposed techniques consider and formulate the channel modeling of UAVs as a classification problem, where the key is to extract the discriminative features of the UAV wireless signal. For this issue, we propose a framework of multiple Gaussian–Bernoulli restricted Boltzmann machines (GBRBM) for dimension reduction and pre-training utilization incorporated with an autoencoder-based deep neural network. The developed system used UAV measurements of a town’s already existing commercial cellular network for training and validation. To evaluate the proposed approach, we run ray-tracing simulations in the program Remcom Wireless InSite at a distinct frequency of 28 GHz and used them for training and validation. The results demonstrate that the proposed method is accurate in channel acquisition for various UAV flying scenarios and outperforms the conventional DNNs.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Al-Gburi, Ahmed
Abdullah, Osamah
Sarhan, Akram
AL-HRAISHAWI, Hayder ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Channel Estimation for UAV Communication Systems Using Deep Neural Networks
Zhao N. Lu W. Sheng M. Chen Y. Tang J. Yu F.R. Wong K.K. UAV-Assisted Emergency Networks in Disasters IEEE Wirel. Commun. 2019 26 45 51 10.1109/MWC.2018.1800160
Alladi T. Naren Bansal G. Chamola V. Guizani M. SecAuthUAV: A Novel Authentication Scheme for UAV-Ground Station and UAV-UAV Communication IEEE Trans. Veh. Technol. 2020 69 15068 15077 10.1109/TVT.2020.3033060
Abdalla A.S. Marojevic V. Communications Standards for Unmanned Aircraft Systems: The 3GPP Perspective and Research Drivers IEEE Commun. Stand. Mag. 2021 5 70 77 10.1109/MCOMSTD.001.2000032
Zeng Y. Wu Q. Zhang R. Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond Proc. IEEE 2019 107 2327 2375 10.1109/JPROC.2019.2952892
Khawaja W. Guvenc I. Matolak D.W. Fiebig U.C. Schneckenburger N. A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles IEEE Commun. Surv. Tuts. 2019 21 2361 2391 10.1109/COMST.2019.2915069
Abdullah O.A. Al-Hraishawi H. Chatzinotas S. Deep Learning-Based Device-Free Localization in Wireless Sensor Networks arXiv 2022 2206.08191
Sun L. Wang Y. Swindlehurst A.L. Tang X. Generative-Adversarial-Network Enabled Signal Detection for Communication Systems With Unknown Channel Models IEEE J. Sel. Areas Commun. 2021 39 47 60 10.1109/JSAC.2020.3036954
Ma X. Gao Z. Data-Driven Deep Learning to Design Pilot and Channel Estimator for Massive MIMO IEEE Trans. Veh. Technol. 2020 69 5677 5682 10.1109/TVT.2020.2980905
Shlezinger N. Farsad N. Eldar Y.C. Goldsmith A.J. Model-Based Machine Learning for Communications arXiv 2021 2101.04726
Ozpoyraz B. Dogukan A.T. Gevez Y. Altun U. Basar E. Deep Learning-Aided 6G Wireless Networks: A Comprehensive Survey of Revolutionary PHY Architectures arXiv 2022 2201.03866 10.1109/OJCOMS.2022.3210648
Karra D. Goudos S.K. Tsoulos G.V. Athanasiadou G. Prediction of Received Signal Power in Mobile Communications Using Different Machine Learning Algorithms:A Comparative Study Proceedings of the Panhellenic Conf. on Electronics Telecommunications (PACET) Volos, Greece 8–9 November 2019 1 4
Cao Y. Zhang L. Liang Y.C. Deep Reinforcement Learning for Channel and Power Allocation in UAV-enabled IoT Systems Proceedings of the IEEE Global Commun. Conf. (GLOBECOM) Waikoloa, HI, USA 9–13 December 2019 1 6
Luo X. Zhang Y. He Z. Yang G. Ji Z. A Two-Step Environment-Learning-Based Method for Optimal UAV Deployment IEEE Access 2019 7 149328 149340 10.1109/ACCESS.2019.2947546
Goudos S.K. Athanasiadou G. Application of an Ensemble Method to UAV Power Modeling for Cellular Communications IEEE Antennas Wirel. Propag. Lett. 2019 18 2340 2344 10.1109/LAWP.2019.2926784
Wang X. Gao L. Mao S. Pandey S. CSI-Based Fingerprinting for Indoor Localization: A Deep Learning Approach IEEE Trans. Veh. Technol. 2017 66 763 776 10.1109/TVT.2016.2545523
Choo S. Lee H. Learning framework of multimodal Gaussian–Bernoulli RBM handling real-value input data Neurocomputing 2018 275 1813 1822 10.1016/j.neucom.2017.10.018
Koller D. Friedman N. Probabilistic Graphical Models: Principles and Techniques–Adaptive Computation and Machine Learning The MIT Press Cambridge, MA, USA 2009
Carreira-Perpiñán M.A. Hinton G. On Contrastive Divergence Learning Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics Bridgetown, Barbados 6–8 January 2005 Volume R5 33 40
Le Roux N. Bengio Y. Representational Power of Restricted Boltzmann Machines and Deep Belief Networks Neural Comput. 2008 20 1631 1649 10.1162/neco.2008.04-07-510 18254699
Cho K. Raiko T. Ilin A. Enhanced Gradient for Training Restricted Boltzmann Machines Neural Comput. 2013 25 805 831 10.1162/NECO_a_00397 23148412
Cho K.H. Raiko T. Ilin A. Gaussian-Bernoulli deep Boltzmann machine Proceedings of the International Joint Conference on Neural Networks (IJCNN) Dallas, TX, USA 4–9 August 2013 1 7
Khawaja W. Ozdemir O. Guvenc I. UAV Air-to-Ground Channel Characterization for mmWave Systems Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-2017) Toronto, ON, Canada 24–27 September 2017 1 5 10.1109/VTCFall.2017.8288376