For extensive coverage areas, multi-beam high throughput satellite (HTS) communication is a promising technology that plays a crucial role in delivering broadband services to many users with diverse Quality of Service (QoS) requirements. This paper focuses on multi-beam HTS systems where all beams reuse the same spectrum. In particular, we propose a novel user scheduling and power allocation design capable of providing guarantees in terms of the individual QoS requirements while maximizing the system throughput under a limited power budget. Precoding is employed in the forward link to mitigate mutual interference among the users in multiple-access scenarios over different coherence time intervals. The combinatorial optimization structure from user scheduling requires an extremely high cost to obtain the global optimum even when a reduced number of users fit into a time slot. Therefore, we propose a heuristic algorithm yielding a good trade-off between performance and computational complexity, applicable to a static operation framework of geostationary (GEO) satellite networks. Although the power allocation optimization is signomial programming, non-convex on a standard form, the solution can be lower bounded by the global optimum of a geometric program with a hidden convex structure. A local solution to the joint user scheduling and power allocation problem is consequently obtained by a successive optimization approach. Numerical results demonstrate the effectiveness of our algorithms on GEO satellite networks by providing better QoS satisfaction combined with outstanding overall system throughput.
Disciplines :
Computer science
Author, co-author :
Chien, Trinh-Van
LAGUNAS, Eva ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Ta, Tung Hai
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
External co-authors :
yes
Language :
English
Title :
User Scheduling and Power Allocation for Precoded Multi-Beam High Throughput Satellite Systems With Individual Quality of Service Constraints
Publication date :
2022
Journal title :
IEEE Transactions on Vehicular Technology
ISSN :
0018-9545
Publisher :
Institute of Electrical and Electronics Engineers, United States
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Security, Reliability and Trust
FnR Project :
FNR13696663 - Resource Optimization For Next Generation Of Flexible Satellite Payloads, 2019 (01/03/2020-31/08/2023) - Eva Lagunas