Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A Unified Framework for Adversarial Attack and Defense in Constrained Feature Space
SIMONETTO, Thibault Jean Angel; DYRMISHI, Salijona; GHAMIZI, Salah et al.
2022In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22
Peer reviewed
 

Documents


Texte intégral
2112.01156.pdf
Preprint Auteur (377.49 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Vision: Adversarial learning, adversarial attack and defense methods; Constraint Satisfaction and Optimization: Constraints and Machine Learning; Constraint Satisfaction and Optimization: Constraint Satisfaction; Constraint Satisfaction and Optimization: Constraint Optimization; Search: Evolutionary Computation
Résumé :
[en] The generation of feasible adversarial examples is necessary for properly assessing models that work in constrained feature space. However, it remains a challenging task to enforce constraints into attacks that were designed for computer vision. We propose a unified framework to generate feasible adversarial examples that satisfy given domain constraints. Our framework can handle both linear and non-linear constraints. We instantiate our framework into two algorithms: a gradient-based attack that introduces constraints in the loss function to maximize, and a multi-objective search algorithm that aims for misclassification, perturbation minimization, and constraint satisfaction. We show that our approach is effective in four different domains, with a success rate of up to 100%, where state-of-the-art attacks fail to generate a single feasible example. In addition to adversarial retraining, we propose to introduce engineered non-convex constraints to improve model adversarial robustness. We demonstrate that this new defense is as effective as adversarial retraining. Our framework forms the starting point for research on constrained adversarial attacks and provides relevant baselines and datasets that future research can exploit.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SIMONETTO, Thibault Jean Angel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
DYRMISHI, Salijona ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
GHAMIZI, Salah ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
CORDY, Maxime  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
LE TRAON, Yves ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SerVal
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
A Unified Framework for Adversarial Attack and Defense in Constrained Feature Space
Date de publication/diffusion :
2022
Nom de la manifestation :
INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
Date de la manifestation :
from 23-07-2022 to 29-07-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22
Maison d'édition :
International Joint Conferences on Artificial Intelligence Organization
ISBN/EAN :
978-1-956792-00-3
Pagination :
1313-1319
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR14585105 - Search-based Adversarial Testing Under Domain-specific Constraints, 2020 (01/10/2020-30/09/2024) - Salijona Dyrmishi
Disponible sur ORBilu :
depuis le 12 décembre 2022

Statistiques


Nombre de vues
268 (dont 14 Unilu)
Nombre de téléchargements
106 (dont 7 Unilu)

citations Scopus®
 
10
citations Scopus®
sans auto-citations
5
citations OpenAlex
 
13

Bibliographie


Publications similaires



Contacter ORBilu